Preface

Inverse synthetic aperture radar (ISAR) has been proven to be a powerful signal processing tool for imaging moving targets usually on the two-dimensional (2D) down-range cross-range plane. ISAR imagery plays an important role especially in military applications such as target identification, recognition, and classification. In these applications, a critical requirement of the ISAR image is to achieve sharp resolution in both down-range and cross-range domains. The usual way of obtaining the 2D ISAR image is by collecting the frequency and aspect diverse backscattered field data from the target. For synthetic aperture radar (SAR) and ISAR scenarios, there is always a trade-off between the down-range resolution and the frequency bandwidth. In contrast to SAR, the radar is usually fixed in the ISAR geometry and the cross-range resolution is attained by target’s rotational motion, which is generally unknown to the radar engineer.

In order to successfully form an ISAR image, the target’s motion should contain some degree of rotational component with respect to radar line of sight (RLOS) direction during the coherent integration time (or dwell time) of the radar system. But in some instances, especially when the target is moving along the RLOS direction, the target’s viewing angle width is insufficient to be able to form an ISAR image. This restriction can be eliminated by utilizing bistatic or multistatic configurations that provide adequate look-angle diversity of the target. ...

Get Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.