You are previewing Introduction to Nanofiber Materials.
O'Reilly logo
Introduction to Nanofiber Materials

Book Description

Presenting the latest coverage of the fundamentals and applications of nanofibrous materials and their structures for graduate students and researchers, this book bridges the communication gap between fiber technologists and materials scientists and engineers. Featuring intensive coverage of electroactive, bioactive and structural nanofibers, it provides a comprehensive collection of processing conditions for electrospinning and includes recent advances in nanoparticle-/nanotube-based nanofibers. The book also covers mechanical properties of fibers and fibrous assemblies, as well as characterization methods.

Table of Contents

  1. Coverpage
  2. Half title page
  3. Title page
  4. Copyright page
  5. Contents
  6. Foreword
  7. Preface
  8. 1 Introduction
    1. 1.1 How big is a nanometer?
    2. 1.2 What is nanotechnology?
    3. 1.3 Historical development of nanotechnology
    4. 1.4 Classification of nanomaterials
    5. 1.5 Nanofiber technology
    6. 1.6 Unique properties of nanofibers
      1. 1.6.1 Effect of fiber size on surface area
      2. 1.6.2 Effect of fiber size on bioactivity
      3. 1.6.3 Effect of fiber size on electroactivity
      4. 1.6.4 Effect of fiber size on strength
    7. References
  9. 2 Fundamentals of polymers
    1. 2.1 Polymeric materials
    2. 2.2 Polymer flow, nonlinearity and heterogeneity
      1. 2.2.1 Linear kinetics
      2. 2.2.2 Nonlinear behavior
      3. 2.2.3 Viscoelastic models
        1. 2.2.3.1 The basic elements: spring and dashpot
        2. 2.2.3.2 Maxwell model
        3. 2.2.3.3 Voigt (Kelvin) model
        4. 2.2.3.4 Four-element model
    3. 2.3 Intrinsic structures of polymers
      1. 2.3.1 Molecular bondings
        1. 2.3.1.1 Van der Waals forces
        2. 2.3.1.2 Hydrogen bonding
      2. 2.3.2 Configuration and conformation
        1. 2.3.2.1 Configuration
        2. 2.3.2.2 Conformation
        3. 2.3.2.3 Other chain structures
      3. 2.3.3 Order and disorder
        1. 2.3.3.1 Amorphous and crystal structure
        2. 2.3.3.2 Orientation
        3. 2.3.3.3 Measurement of order and disorder
      4. 2.3.4 Molecular weight and molecular weight distribution
    4. 2.4 Thermal behavior
    5. 2.5 Polymer solutions
      1. 2.5.1 Solubility parameter
      2. 2.5.2 Solution viscosity
        1. 2.5.2.1 Intrinsic viscosity
        2. 2.5.2.2 Intrinsic viscosity and molecular weight
        3. 2.5.2.3 Measurement of intrinsic viscosity
    6. 2.6 Fiber, plastic and elastomer
    7. 2.7 Fiber formation
      1. 2.7.1 Melt spinning
      2. 2.7.2 Wet spinning
      3. 2.7.3 Dry spinning
      4. 2.7.4 Fiber properties
        1. 2.7.4.1 Polymer structure and fiber mechanical properties
        2. 2.7.4.2 Processing and fiber properties
    8. References
  10. 3 Nanofiber technology
    1. 3.1 Nanofiber-forming technology
      1. 3.1.1 Conjugate spinning (island in the sea)
      2. 3.1.2 Chemical vapor deposition (CVD)
      3. 3.1.3 Phase separation (sol–gel process)
      4. 3.1.4 Drawing
      5. 3.1.5 Template synthesis
      6. 3.1.6 Self-assembly
      7. 3.1.7 Meltblown technology
      8. 3.1.8 Electrospinning
    2. 3.2 Electrospinning process
    3. 3.3 Processing parameters
      1. 3.3.1 Spinning dope concentration and viscosity
      2. 3.3.2 Applied voltage
      3. 3.3.3 Spinning dope temperature
      4. 3.3.4 Surface tension
      5. 3.3.5 Electrical conductivity
      6. 3.3.6 Molecular weight of polymer
      7. 3.3.7 Spinning distance
      8. 3.3.8 Spinning angle
      9. 3.3.9 Orifice diameter
      10. 3.3.10 Solvent boiling point
      11. 3.3.11 Humidity
      12. 3.3.12 Dielectric constant
      13. 3.3.13 Feeding rate
    4. 3.4 Melt electrospinning
    5. 3.5 Applications of nanofibers
      1. 3.5.1 Reinforcement fibers in composites
      2. 3.5.2 Protective clothing
      3. 3.5.3 Filtration
      4. 3.5.4 Biomedical devices
        1. 3.5.4.1 Wound dressing
        2. 3.5.4.2 Medical prostheses
        3. 3.5.4.3 Tissue scaffolds
        4. 3.5.4.4 Controlled drug delivery
      5. 3.5.5 Electrical and optical applications
      6. 3.5.6 Nanosensors
    6. References
  11. 4 Modeling and simulation
    1. 4.1 Electrospinning mechanism
    2. 4.2 Fundamentals of process modeling
      1. 4.2.1 Newton's law
      2. 4.2.2 Conservation laws
    3. 4.3 Taylor cone
    4. 4.4 Jet profile
    5. 4.5 Models
      1. 4.5.1 One-dimensional model
      2. 4.5.2 Three-dimensional models
        1. 4.5.2.1 Spivak–Dzenis model
        2. 4.5.2.2 Rutledge's model
        3. 4.5.2.3 Wan–Guo–Pan model
    6. 4.6 Application of models in parametric analysis
    7. 4.7 Computer simulation
    8. References
  12. 5 Mechanical properties of fibers and fiber assemblies
    1. 5.1 Structure of hierarchy of textile materials
    2. 5.2 Size effect on mechanical properties
    3. 5.3 Theoretical modulus of a fiber
    4. 5.4 Mechanical properties of nonwovens
      1. 5.4.1 Geometry of nonwovens
      2. 5.4.2 Deformation of nonwovens
    5. 5.5 Mechanical properties of yarns
      1. 5.5.1 Yarn geometry
      2. 5.5.2 Mechanical properties of linear fiber assemblies
        1. 5.5.2.1 Stress analysis
        2. 5.5.2.2 Strain analysis
      3. 5.5.3 Mechanical properties of staple yarns
    6. 5.6 Mechanical properties of woven fabrics
      1. 5.6.1 Woven fabric geometry
    7. References
  13. 6 Characterization of nanofibers
    1. 6.1 Structural characterization of nanofibers
      1. 6.1.1 Optical microscopy (OM)
      2. 6.1.2 Scanning electron microscopy (SEM)
      3. 6.1.3 Transmission electron microscopy (TEM)
      4. 6.1.4 Atomic force microscopy (AFM)
      5. 6.1.5 Scanning tunneling microscopy (STM)
      6. 6.1.6 X-ray diffraction
        1. 6.1.6.1 Wide-angle X-ray diffraction
        2. 6.1.6.2 Small-angle X-ray scattering
      7. 6.1.7 Mercury porosimetry
    2. 6.2 Chemical characterization of nanofibers
      1. 6.2.1 Fourier transform infra-red spectroscopy (FTIR)
      2. 6.2.2 Raman spectroscopy (RS)
      3. 6.2.3 Nuclear magnetic resonance (NMR)
    3. 6.3 Mechanical characterization of nanofibers
      1. 6.3.1 Microtensile testing of nanofiber nonwoven fabric
      2. 6.3.2 Mechanical testing of a single nanofiber
    4. 6.4 Thermal analysis
      1. 6.4.1 Thermogravimetric analysis (TGA)
      2. 6.4.2 Differential scanning calorimetry (DSC)
    5. 6.5 Characterization of other properties
      1. 6.5.1 Wettability and contact angle
      2. 6.5.2 Electrical conductivity
      3. 6.5.3 Electrochemical properties
        1. 6.5.3.1 Linear-sweep voltammetry and cyclic voltammetry
        2. 6.5.3.2 Chronopotentiometry
      4. 6.5.4 Magnetic properties
    6. References
  14. 7 Bioactive nanofibers
    1. 7.1 The development of biomaterials
    2. 7.2 Bioactive nanofibers
      1. 7.2.1 Nanofibers for tissue engineering
        1. 7.2.1.1 Extracellular matrices for tissue engineering
        2. 7.2.1.2 Nanofiber scaffolds for tissue engineering
      2. 7.2.2 Nanofibers for drug delivery
        1. 7.2.2.1 Drug delivery systems
        2. 7.2.2.2 Nanofibers for drug delivery
      3. 7.2.3 Nanofibers for biosensors
        1. 7.2.3.1 Biosensors
        2. 7.2.3.2 Nanofiber biosensors
    3. 7.3 Assessment of nanofiber bioactivity
      1. 7.3.1 Assessment of tissue compatibility
      2. 7.3.2 Assessment of degradation
    4. References
  15. 8 Electroactive nanofibers
    1. 8.1 Introduction
    2. 8.2 Conductive nanofibers
      1. 8.2.1 Conductive polymers and fibers
      2. 8.2.2 Fundamental principle for superior electrical conductivity
      3. 8.2.3 Electroactive nanofibers
    3. 8.3 Magnetic nanofibers
      1. 8.3.1 Supermagnetism
      2. 8.3.2 Supermagnetic nanofibers
    4. 8.4 Photonic nanofibers
      1. 8.4.1 Polymer photonics
      2. 8.4.2 Fluorescent nanofibers
      3. 8.4.3 Photo-catalytic nanofibers
    5. References
  16. 9 Nanocomposite fibers
    1. 9.1 Introduction
    2. 9.2 Carbon nanotubes
      1. 9.2.1 Structure and properties
        1. 9.2.1.1 Structure
        2. 9.2.1.2 Mechanical properties
        3. 9.2.1.3 Electrical properties
        4. 9.2.1.4 Thermal properties
      2. 9.2.2 Dispersion of carbaon nanotubes
        1. 9.2.2.1 Purification
        2. 9.2.2.2 Mechanical dispersion
        3. 9.2.2.3 Chemical dispersion
      3. 9.2.3 Alignment of carbon nanotubes
        1. 9.2.3.1 Alignment of carbon nanotubes in solution
        2. 9.2.3.2 Alignment of carbon nanotubes in matrix
      4. 9.2.4 Carbon nanotube nanocomposite fibers
        1. 9.2.4.1 Methods for producing carbon nanotube fibers
        2. 9.2.4.2 Chemical vapor deposition
        3. 9.2.4.3 Dry spinning
        4. 9.2.4.4 Liquid crystal spinning
        5. 9.2.4.5 Wet spinning
        6. 9.2.4.6 Traditional spinning
        7. 9.2.4.7 Electrospinning
    3. 9.3 Nanoclay
      1. 9.3.1 Structure and properties
      2. 9.3.2 Clay nanocomposites
      3. 9.3.3 Nanoclay nanocomposite fibers
    4. 9.4 Graphite graphenes
      1. 9.4.1 Structure and properties
      2. 9.4.2 Graphene nanocomposites
      3. 9.4.3 Graphene nanocomposite nanofibers
    5. 9.5 Carbon nanofibers
      1. 9.5.1 Vapor-grown carbon nanofibers
      2. 9.5.2 Electrospun carbon nanofibers
      3. 9.5.3 Carbon nanofiber composites
    6. References
  17. 10 Future opportunities and challenges of electrospinning
    1. 10.1 Future of nanotechnology
    2. 10.2 Global challenges and nanotechnology
      1. 10.2.1 Nanofibers in energy
        1. 10.2.1.1 Electrodes and electrolytes in fuel cells or batteries
        2. 10.2.1.2 Supercapacitors
        3. 10.2.1.3 Dye-sensitized solar cells
        4. 10.2.1.4 Power transmission lines
      2. 10.2.2 Nanofibers in filtration
      3. 10.2.3 Nanofibers in biomedical engineering
    3. 10.3 Challenges
      1. 10.3.1 Mechanism analysis
      2. 10.3.2 Quality control
      3. 10.3.3 Scale-up manufacturing
      4. 10.3.4 Structural property improvement
    4. 10.4 New frontiers
    5. References
  18. Appendix I Terms and unit conversion
  19. Appendix II Abbreviation of polymers
  20. Appendix III Classification of fibers
  21. Appendix IV Polymers and solvents for electrospinning
  22. Index