You are previewing Introduction to MIMO Communications.
O'Reilly logo
Introduction to MIMO Communications

Book Description

This accessible, self-contained guide contains everything you need to get up to speed on the theory and implementation of MIMO techniques. In-depth coverage of topics such as RF propagation, space-time coding, spatial multiplexing, OFDM in MIMO for broadband applications, the theoretical MIMO capacity formula and channel estimation will give you a deep understanding of how the results are obtained, while detailed descriptions of how MIMO is implemented in commercial WiFi and LTE networks will help you apply the theory to practical wireless systems. Key concepts in matrix mathematics and information theory are introduced and developed as you need them, and key results are derived step-by-step, with no details omitted. Including numerous worked examples, and end-of-chapter exercises to reinforce and solidify your understanding, this is the perfect introduction to MIMO for anyone new to the field.

Table of Contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright
  5. Contents
  6. Preface
  7. 1. Overview of MIMO communications
    1. 1.1 What is MIMO?
    2. 1.2 History of MIMO
    3. 1.3 Smart antennas vs MIMO
    4. 1.4 Single-user and multi-user MIMO
    5. 1.5 Introduction to spatial diversity
      1. 1.5.1 The concept of diversity
      2. 1.5.2 Receive and transmit diversity
      3. 1.5.3 Common diversity performance metrics
      4. 1.5.4 Relationship between diversity order and diversity gain
    6. 1.6 Introduction to spatial multiplexing
      1. 1.6.1 The concept of spatial multiplexing
    7. 1.7 Open- and closed-loop MIMO
    8. 1.8 The practical use of MIMO
      1. 1.8.1 Commercial MIMO implementations
      2. 1.8.2 Measured MIMO performance
    9. 1.9 Review of matrices
      1. 1.9.1 Basic definitions
      2. 1.9.2 Theorems and properties
  8. 2. The MIMO capacity formula
    1. 2.1 What is information?
    2. 2.2 Entropy
    3. 2.3 Mutual information
    4. 2.4 Definition of SISO capacity
    5. 2.5 Definition of MIMO capacity
      1. 2.5.1 MIMO system model
      2. 2.5.2 Capacity
    6. 2.6 Evaluating H(z)
    7. 2.7 Evaluating H(r)
    8. 2.8 Final result
      1. 2.8.1 Real signals
      2. 2.8.2 Complex signals
  9. 3. Applications of the MIMO capacity formula
    1. 3.1 MIMO capacity under the CSIR assumption
    2. 3.2 Eigen-channels and channel rank
    3. 3.3 Optimum distribution of channel eigenvalues
    4. 3.4 Eigenbeamforming
    5. 3.5 Optimal allocation of power in eigenbeamforming
      1. 3.5.1 The waterfilling algorithm
      2. 3.5.2 Discussion of the waterfilling algorithm
    6. 3.6 Single-mode eigenbeamforming
    7. 3.7 Performance comparison
      1. 3.7.1 Results for N[sub(r)] ≥ N[sub(t)]
      2. 3.7.2 Results for N[sub(t)] > N[sub(r)]
    8. 3.8 Capacities of SIMO and MISO channels
      1. 3.8.1 SIMO capacity
      2. 3.8.2 MISO capacity
    9. 3.9 Capacity of random channels
      1. 3.9.1 Definition of H[sub(w)]
      2. 3.9.2 Capacity of an H[sub(w)] channel for large N
      3. 3.9.3 Ergodic capacity
      4. 3.9.4 Outage capacity
  10. 4. RF propagation
    1. 4.1 Phenomenology of multipath channels
    2. 4.2 Power law propagation
    3. 4.3 Impulse response of a multipath channel
    4. 4.4 Intrinsic multipath channel parameters
      1. 4.4.1 Parameters related to τ
      2. 4.4.2 Parameters related to t
    5. 4.5 Classes of multipath channels
      1. 4.5.1 Flat fading
      2. 4.5.2 Frequency-selective fading
      3. 4.5.3 Slow and fast fading
    6. 4.6 Statistics of small-scale fading
      1. 4.6.1 Rayleigh fading
      2. 4.6.2 Rician fading
  11. 5. MIMO channel models
    1. 5.1 MIMO channels in LOS geometry
    2. 5.2 General channel model with correlation
    3. 5.3 Kronecker channel model
    4. 5.4 Impact of antenna correlation on MIMO capacity
    5. 5.5 Dependence of R[sub(t)] and R[sub(r)] on antenna spacing and scattering angle
    6. 5.6 Pinhole scattering
    7. 5.7 Line-of-sight channel model
  12. 6. Alamouti coding
    1. 6.1 Maximal ratio receive combining (MRRC)
    2. 6.2 Challenges with achieving transmit diversity
      1. 6.3 2 × 1 Alamouti coding
      2. 6.4 2 × N[sub(r)] Alamouti coding
      3. 6.4.1 The 2 × 2 case
      4. 6.4.2 The 2 × N[sub(r)] case
    3. 6.5 Maximum likelihood demodulation in MRRC and Alamouti receivers
    4. 6.6 Performance results
      1. 6.6.1 Theoretical performance analysis
      2. 6.6.2 Simulating Alamouti and MRRC systems
      3. 6.6.3 Results
  13. 7. Space-time coding
    1. 7.1 Space-time coding introduction
      1. 7.1.1 Definition of STBC code rate
      2. 7.1.2 Spectral efficiency of a STBC
      3. 7.1.3 A taxonomy of space-time codes
    2. 7.2 Space-time code design criteria
      1. 7.2.1 General pairwise error probability expression
      2. 7.2.2 Pairwise error probability in Rayleigh fading
      3. 7.2.3 Pairwise error probability in Rician fading
      4. 7.2.4 Summary of design criteria
    3. 7.3 Orthogonal space-time block codes
      1. 7.3.1 Real, square OSTBCs
      2. 7.3.2 Real, non-square OSTBCs
      3. 7.3.3 Complex OSTBCs
      4. 7.3.4 Decoding OSTBCs
      5. 7.3.5 Simulating OSTBC performance
      6. 7.3.6 OSTBC performance results
    4. 7.4 Space-time trellis codes
      1. 7.4.1 STTC encoding
      2. 7.4.2 STTC performance results
  14. 8. Spatial multiplexing
    1. 8.1 Overview of spatial multiplexing
    2. 8.2 BLAST encoding architectures
      1. 8.2.1 Vertical-BLAST (V-BLAST)
      2. 8.2.2 Horizontal-BLAST (H-BLAST)
      3. 8.2.3 Diagonal-BLAST (D-BLAST)
    3. 8.3 Demultiplexing methods for H-BLAST and V-BLAST
      1. 8.3.1 Zero-forcing (ZF)
      2. 8.3.2 Zero-forcing with interference cancellation (ZF-IC)
      3. 8.3.3 Linear minimum mean square detection (LMMSE)
      4. 8.3.4 LMMSE with interference cancellation (LMMSE-IC)
      5. 8.3.5 BLAST performance results
      6. 8.3.6 Comparison of ZF and LMMSE at large SNR
    4. 8.4 Multi-group space-time coded modulation (MGSTC)
      1. 8.4.1 The MGSTC encoder structure
      2. 8.4.2 Nomenclature
      3. 8.4.3 MGSTC decoding
      4. 8.4.4 Group-dependent diversity
      5. 8.4.5 MGSTC performance results
  15. 9. Broadband MIMO
    1. 9.1 Flat and frequency-selective fading
    2. 9.2 Strategies for coping with frequency-selective fading
      1. 9.2.1 Exploiting frequency-selective fading
      2. 9.2.2 Combating frequency-selective fading
    3. 9.3 Conventional OFDM
    4. 9.4 MIMO OFDM
    5. 9.5 OFDMA
    6. 9.6 Space-frequency block coding (SFBC)
  16. 10. Channel estimation
    1. 10.1 Introduction
    2. 10.2 Pilot allocation strategies
      1. 10.2.1 Narrowband MIMO channels
      2. 10.2.2 Broadband MIMO channels
      3. 10.2.3 Designing pilot spacing
      4. 10.2.4 Spatial pilot allocation strategies
    3. 10.3 Narrowband MIMO channel estimation
      1. 10.3.1 Maximum likelihood channel estimation
      2. 10.3.2 Least squares channel estimation
      3. 10.3.3 Linear minimum mean square channel estimation
      4. 10.3.4 Choosing pilot signals
      5. 10.3.5 Narrowband CE performance
    4. 10.4 Broadband MIMO channel estimation
      1. 10.4.1 Frequency-domain channel estimation
      2. 10.4.2 Time-frequency interpolation
  17. 11. Practical MIMO examples
    1. 11.1 WiFi
      1. 11.1.1 Overview of IEEE 802.11n
      2. 11.1.2 802.11n packet structure
      3. 11.1.3 802.11n HT transmitter architecture
      4. 11.1.4 Space-time block coding in 802.11n
      5. 11.1.5 OFDM in 802.11n
      6. 11.1.6 Channel estimation
      7. 11.1.7 Modulation and coding schemes in 802.11n
    2. 11.2 LTE
      1. 11.2.1 Overview and history
      2. 11.2.2 LTE waveform structure
      3. 11.2.3 LTE transmitter block diagrams
      4. 11.2.4 DL transmit diversity
      5. 11.2.5 Spatial multiplexing
      6. 11.2.6 LTE data rates
  18. Appendices
    1. A. MIMO system equation normalization
    2. B. Proof of theorem 5.2
    3. C. Derivation of Eq. 7.9
    4. D. Maximum likelihood decoding rules for selected OSTBCs
    5. E. Derivation of Eq. 8.68
    6. F. Parameters for the non-unequal HT modulation and coding schemes in IEEE 802.11n
  19. References
  20. Index