You are previewing International Journal of Rough Sets and Data Analysis (IJRSDA) Volume 2, Issue 1.
O'Reilly logo
International Journal of Rough Sets and Data Analysis (IJRSDA) Volume 2, Issue 1

Book Description

The International Journal of Rough Sets and Data Analysis (IJRSDA) is a multidisciplinary journal that publishes high-quality and significant research in all fields of rough sets, granular computing and data mining techniques. Rough set theory is a mathematical approach concerned with the analysis and modeling of classification and decision problems involving vague, imprecise, uncertain, or incomplete information. Rough sets have been proposed for a variety of applications, including artificial intelligence and cognitive sciences, especially machine learning, knowledge discovery, data mining, expert systems, approximate reasoning, and pattern recognition. The journal extends existing research findings (theoretical innovations and modeling applications) to provide the highest quality original concepts, hybrid applications, innovative methodologies, and development trends studies for all audiences. This journal publishes original articles, reviews, technical reports, patent alerts, and case studies on the latest innovative findings of new methodologies and techniques.

This issue contains the following articles:

  • Evaluating the Degree of Trust Under Context Sensitive Relational Database Hierarchy Using Hybrid Intelligent Approach
  • Hybrid TRS-PSO Clustering Approach for Web2.0 Social Tagging System
  • Forecasting Exchange Rates: A Chaos-Based Regression Approach
  • Performance Analysis of Hard and Soft Clustering Approaches For Gene Expression Data
  • Hybrid TRS-FA Clustering Approach for Web2.0 Social Tagging System