You are previewing HIGH FREQUENCY OVER THE HORIZON RADAR : Fundamental Principles, Signal Processing, and Practical Applications.
O'Reilly logo
HIGH FREQUENCY OVER THE HORIZON RADAR : Fundamental Principles, Signal Processing, and Practical Applications

Book Description

The Definitive Guide to Communicating in Any Crisis“When facing an already difficult crisis, the last thing a company needs is to make it worse through its own communications ” or lack thereof.

Table of Contents

  1. Cover 
  2. Title Page
  3. Copyright Page
  4. About the Author
  5. Contents at a Glance
  6. Contents 
  7. Preface
  8. Acknowledgments
  9. Abbreviations
  10. Chapter 1: Introduction
    1. 1.1. Background and Motivation
      1. 1.1.1. Line-of-Sight Radars
      2. 1.1.2. Coverage Limitations
      3. 1.1.3. Beyond the Horizon
    2. 1.2. OTH Radar Principles
      1. 1.2.1. Operational Concept
      2. 1.2.2. General Characteristics
      3. 1.2.3. Practical Applications
    3. 1.3. HF Radar Equation
      1. 1.3.1. Slant Range
      2. 1.3.2. Transmit Power
      3. 1.3.3. Antenna Gains
      4. 1.3.4. Target RCS
      5. 1.3.5. Integration Time
      6. 1.3.6. Total Losses
      7. 1.3.7. Propagation Factor
      8. 1.3.8. Ambient Noise
      9. 1.3.9. Numerical Example
    4. 1.4. Nominal System Capabilities
      1. 1.4.1. Minimum and Maximum Range
      2. 1.4.2. Dwell Illumination Region
      3. 1.4.3. Resolution and Accuracy
  11. Part I: Fundamental Principles
    1. Chapter 2: Skywave Propagation
      1. 2.1. The Ionosphere
        1. 2.1.1. Historical Overview
        2. 2.1.2. Formation and Structure
        3. 2.1.3. The D-, E-, and F-Regions
      2. 2.2. Spatial and Temporal Variability
        1. 2.2.1. Radio Sounding at Vertical Incidence
        2. 2.2.2. Measurements and Models
        3. 2.2.3. Disturbances and Storms
      3. 2.3. Oblique Propagation
        1. 2.3.1. Equivalence Relationships
        2. 2.3.2. Point-to-Point Links
        3. 2.3.3. Frequency, Elevation, and Ground Range
      4. 2.4. Ionospheric Modes
        1. 2.4.1. Ordinary and Extraordinary Waves
        2. 2.4.2. Multipath Propagation
        3. 2.4.3. Amplitude and Phase Fading
    2. Chapter 3: System Characteristics
      1. 3.1. Preliminary Considerations
        1. 3.1.1. Configuration and Site Selection
        2. 3.1.2. Radar Waveforms
        3. 3.1.3. Out-of-Band Emissions
      2. 3.2. Radar Architecture
        1. 3.2.1. Transmit System
        2. 3.2.2. Receive System
        3. 3.2.3. Array Calibration
      3. 3.3. Frequency Management
        1. 3.3.1. Propagation-Path Assessment
        2. 3.3.2. Channel Occupancy and Noise
        3. 3.3.3. Ionospheric Mode Structure
      4. 3.4. Historical Perspective
        1. 3.4.1. Past and Present Systems
        2. 3.4.2. OTH Radar in Australia
        3. 3.4.3. Future Prospects
    3. Chapter 4: Conventional Processing
      1. 4.1. Signal Environment
        1. 4.1.1. Target Echoes
        2. 4.1.2. Clutter Returns
        3. 4.1.3. Noise and Interference
      2. 4.2. Standard Routines
        1. 4.2.1. Pulse Compression
        2. 4.2.2. Array Beamforming
        3. 4.2.3. Doppler Processing
      3. 4.3. Operational Considerations
        1. 4.3.1. Air and Surface Tasks
        2. 4.3.2. Transient Disturbance Mitigation
        3. 4.3.3. Data Extrapolation and Signal Conditioning
      4. 4.4. Detection and Tracking
        1. 4.4.1. Constant False-Alarm Rate Processing
        2. 4.4.2. Threshold Detection and Peak Estimation
        3. 4.4.3. Tracking and Coordinate Registration
    4. Chapter 5: Surface-Wave Radar
      1. 5.1. General Characteristics
        1. 5.1.1. Principle of Operation
        2. 5.1.2. Architecture and Capabilities
        3. 5.1.3. Practical Applications
      2. 5.2. Propagation Mechanism
        1. 5.2.1. Short and Long Distances
        2. 5.2.2. Tropospheric Refraction
        3. 5.2.3. Surface Roughness and Heterogeneity
      3. 5.3. Environmental Factors
        1. 5.3.1. Sea Clutter
        2. 5.3.2. Ionospheric Clutter
        3. 5.3.3. Interference and Noise
      4. 5.4. Practical Implementation
        1. 5.4.1. Configuration and Siting
        2. 5.4.2. Radar Subsystems
        3. 5.4.3. Signal and Data Processing
      5. 5.5. Operational Considerations
        1. 5.5.1. Radar Cross Section
        2. 5.5.2. Multi-Frequency Operation
        3. 5.5.3. Example Systems
  12. Part II: Signal Description
    1. Chapter 6: Wave-Interference Model
      1. 6.1. Deterministic Description
        1. 6.1.1. Background and Scope
        2. 6.1.2. Gross Structure of Composite Wavefields
        3. 6.1.3. Fine Structure of Individual Modes
      2. 6.2. Channel Scattering Function
        1. 6.2.1. Ionospheric Mode Identification
        2. 6.2.2. Nominal Mode Parameters
        3. 6.2.3. Fine Structure Observations
      3. 6.3. Resolving Fine Structure
        1. 6.3.1. Signal Representation
        2. 6.3.2. Parameter Estimation
        3. 6.3.3. Space-Time MUSIC
      4. 6.4. Experimental Results
        1. 6.4.1. Preliminary Data Analysis
        2. 6.4.2. Model-Fitting Accuracy
        3. 6.4.3. Summary and Discussion
    2. Chapter 7: Statistical Signal Model
      1. 7.1. Stationary Processes
        1. 7.1.1. Background and Scope
        2. 7.1.2. Measurements on HF Signals
        3. 7.1.3. Extension to Antenna Arrays
      2. 7.2. Diffuse Scattering
        1. 7.2.1. Mathematical Representation
        2. 7.2.2. Varying Ionospheric Structure
        3. 7.2.3. Auto-Correlation Functions
      3. 7.3. Temporal Statistics
        1. 7.3.1. Parameter Estimation Method
        2. 7.3.2. Hypothesis Acceptance Test
        3. 7.3.3. Spatial Homogeneity Assumption
      4. 7.4. Spatial and Space-Time Statistics
        1. 7.4.1. Correlation Coefficients
        2. 7.4.2. Mean Plane Wavefront
        3. 7.4.3. Space-Time Separability
    3. Chapter 8: HF Channel Simulator
      1. 8.1. Point and Extended Sources
        1. 8.1.1. Traditional Array-Processing Models
        2. 8.1.2. Coherent and Incoherent Ray Distributions
        3. 8.1.3. Parametric Localization of Distributed Signals
      2. 8.2. Generalized Watterson Model
        1. 8.2.1. Mathematical Formulation and Interpretation
        2. 8.2.2. Temporal and Spatial Fluctuations
        3. 8.2.3. Expected Second-Order Statistics
      3. 8.3. Parameter-Estimation Techniques
        1. 8.3.1. Standard Identification Procedures
        2. 8.3.2. Matched-Field MUSIC Algorithm
        3. 8.3.3. Polynomial Rooting Method
      4. 8.4. Real-Data Application
        1. 8.4.1. Closed-Form Least Squares
        2. 8.4.2. Subspace-Based Approach
        3. 8.4.3. Summary and Discussion
    4. Chapter 9: Interference Cancelation Analysis
      1. 9.1. Interference and Noise Mitigation
        1. 9.1.1. Spatial Processing
        2. 9.1.2. Popular Techniques
        3. 9.1.3. HF Applications
      2. 9.2. Standard Adaptive Beamforming
        1. 9.2.1. Sample Matrix Inverse Technique
        2. 9.2.2. Practical Implementation Schemes
        3. 9.2.3. Alternative Time-Varying Approach
      3. 9.3. Instantaneous Performance Analysis
        1. 9.3.1. Real-Data Collection
        2. 9.3.2. Intra-CPI Performance Analysis
        3. 9.3.3. Output SINR Improvement
      4. 9.4. Statistical Performance Analysis
        1. 9.4.1. Framing Schemes
        2. 9.4.2. Batch Schemes
        3. 9.4.3. Operational Issues
      5. 9.5. Simulated Performance Prediction
        1. 9.5.1. Multi-Channel Model Parameters
        2. 9.5.2. Impact of Wavefront Distortions
        3. 9.5.3. Summary and Discussion
  13. Part III: Processing Techniques
    1. Chapter 10: Adaptive Beamforming
      1. 10.1. Essential Concepts
        1. 10.1.1. Optimum and Adaptive Filters
        2. 10.1.2. Homogeneous Gaussian Case
        3. 10.1.3. Real-World Environments
      2. 10.2. Problem Formulation
        1. 10.2.1. Interference and Clutter Mitigation
        2. 10.2.2. Multi-Channel Data Model
        3. 10.2.3. Standard Adaptive Beamforming
      3. 10.3. Time-Varying Approaches
        1. 10.3.1. Stochastic Constraints
        2. 10.3.2. Time-Varying Spatial Adaptive Processing
        3. 10.3.3. Experimental Results
      4. 10.4. Post-Doppler Techniques
        1. 10.4.1. Motivating Practical Application
        2. 10.4.2. Range-Dependent Adaptive Beamforming
        3. 10.4.3. Extended Data Analysis
    2. Chapter 11: Space-Time Adaptive Processing
      1. 11.1. STAP Architectures
        1. 11.1.1. Slow-Time STAP
        2. 11.1.2. Fast-Time STAP
        3. 11.1.3. 3D-STAP
      2. 11.2. Data Model
        1. 11.2.1. Composite Signal
        2. 11.2.2. Cold Clutter
        3. 11.2.3. Hot Clutter
      3. 11.3. Mitigation Techniques
        1. 11.3.1. Standard Schemes
        2. 11.3.2. Alternative Procedures
        3. 11.3.3. Simulation Results
      4. 11.4. Post-Doppler STAP Implementation
        1. 11.4.1. Algorithm Description
        2. 11.4.2. Experimental Results
        3. 11.4.3. Discussion
    3. Chapter 12: GLRT Detection Schemes
      1. 12.1. Problem Description
        1. 12.1.1. Background and Motivation
        2. 12.1.2. Traditional Hypothesis Test
        3. 12.1.3. Alternative Binary Tests
      2. 12.2. Measurement Models
        1. 12.2.1. Disturbance Process
        2. 12.2.2. Useful Signal
        3. 12.2.3. Coherent Interference
      3. 12.3. Processing Schemes
        1. 12.3.1. One-and Two-Step GLRT
        2. 12.3.2. Partially Homogeneous Case
        3. 12.3.3. Joint Data-Set Detection
      4. 12.4. Practical Applications
        1. 12.4.1. Spatial Processing
        2. 12.4.2. Temporal Processing
        3. 12.4.3. Hybrid Technique
    4. Chapter 13: Blind Waveform Estimation
      1. 13.1. Problem Formulation
        1. 13.1.1. Multipath Model
        2. 13.1.2. Processing Objectives
        3. 13.1.3. Motivating Example
      2. 13.2. Standard Techniques
        1. 13.2.1. Blind System Identification
        2. 13.2.2. Blind Signal Separation
        3. 13.2.3. Discussion
      3. 13.3. GEMS Algorithm
        1. 13.3.1. Noiseless Case
        2. 13.3.2. Operational Procedure
        3. 13.3.3. Computational Complexity
      4. 13.4. SIMO Experiment
        1. 13.4.1. Data Collection
        2. 13.4.2. Signal-Copy Methods
        3. 13.4.3. Application of GEMS
      5. 13.5. MIMO Experiment
        1. 13.5.1. Data Collection
        2. 13.5.2. Source and Multipath Separation
        3. 13.5.3. Radar Application
      6. 13.6. Single-Site Geolocation
        1. 13.6.1. Background and Motivation
        2. 13.6.2. Data Collection
        3. 13.6.3. Geolocation Method
        4. 13.6.4. Summary and Future Work
  14. Part IV: Appendixes and Bibliography
    1. Appendix A: Sample ACS Distribution
    2. Appendix B: Space-Time Separability
    3. Appendix C: Modal Decomposition
  15. Bibliography
  16. Index