You are previewing Hadoop Operations.

Hadoop Operations

Cover of Hadoop Operations by Eric Sammer Published by O'Reilly Media, Inc.
  1. Hadoop Operations
  2. Dedication
  3. Preface
    1. Conventions Used in This Book
    2. Using Code Examples
    3. Safari® Books Online
    4. How to Contact Us
    5. Acknowledgments
  4. 1. Introduction
  5. 2. HDFS
    1. Goals and Motivation
    2. Design
    3. Daemons
    4. Reading and Writing Data
      1. The Read Path
      2. The Write Path
    5. Managing Filesystem Metadata
    6. Namenode High Availability
    7. Namenode Federation
    8. Access and Integration
      1. Command-Line Tools
      2. FUSE
      3. REST Support
  6. 3. MapReduce
    1. The Stages of MapReduce
    2. Introducing Hadoop MapReduce
      1. Daemons
      2. When It All Goes Wrong
    3. YARN
  7. 4. Planning a Hadoop Cluster
    1. Picking a Distribution and Version of Hadoop
      1. Apache Hadoop
      2. Cloudera’s Distribution Including Apache Hadoop
      3. Versions and Features
      4. What Should I Use?
    2. Hardware Selection
      1. Master Hardware Selection
      2. Worker Hardware Selection
      3. Cluster Sizing
      4. Blades, SANs, and Virtualization
    3. Operating System Selection and Preparation
      1. Deployment Layout
      2. Software
      3. Hostnames, DNS, and Identification
      4. Users, Groups, and Privileges
    4. Kernel Tuning
      1. vm.swappiness
      2. vm.overcommit_memory
    5. Disk Configuration
      1. Choosing a Filesystem
      2. Mount Options
    6. Network Design
      1. Network Usage in Hadoop: A Review
      2. 1 Gb versus 10 Gb Networks
      3. Typical Network Topologies
  8. 5. Installation and Configuration
    1. Installing Hadoop
      1. Apache Hadoop
      2. CDH
    2. Configuration: An Overview
      1. The Hadoop XML Configuration Files
    3. Environment Variables and Shell Scripts
    4. Logging Configuration
    5. HDFS
      1. Identification and Location
      2. Optimization and Tuning
      3. Formatting the Namenode
      4. Creating a /tmp Directory
    6. Namenode High Availability
      1. Fencing Options
      2. Basic Configuration
      3. Automatic Failover Configuration
      4. Format and Bootstrap the Namenodes
    7. Namenode Federation
    8. MapReduce
      1. Identification and Location
      2. Optimization and Tuning
    9. Rack Topology
    10. Security
  9. 6. Identity, Authentication, and Authorization
    1. Identity
    2. Kerberos and Hadoop
      1. Kerberos: A Refresher
      2. Kerberos Support in Hadoop
    3. Authorization
      1. HDFS
      2. MapReduce
      3. Other Tools and Systems
    4. Tying It Together
  10. 7. Resource Management
    1. What Is Resource Management?
    2. HDFS Quotas
    3. MapReduce Schedulers
      1. The FIFO Scheduler
      2. The Fair Scheduler
      3. The Capacity Scheduler
      4. The Future
  11. 8. Cluster Maintenance
    1. Managing Hadoop Processes
      1. Starting and Stopping Processes with Init Scripts
      2. Starting and Stopping Processes Manually
    2. HDFS Maintenance Tasks
      1. Adding a Datanode
      2. Decommissioning a Datanode
      3. Checking Filesystem Integrity with fsck
      4. Balancing HDFS Block Data
      5. Dealing with a Failed Disk
    3. MapReduce Maintenance Tasks
      1. Adding a Tasktracker
      2. Decommissioning a Tasktracker
      3. Killing a MapReduce Job
      4. Killing a MapReduce Task
      5. Dealing with a Blacklisted Tasktracker
  12. 9. Troubleshooting
    1. Differential Diagnosis Applied to Systems
    2. Common Failures and Problems
      1. Humans (You)
      2. Misconfiguration
      3. Hardware Failure
      4. Resource Exhaustion
      5. Host Identification and Naming
      6. Network Partitions
    3. “Is the Computer Plugged In?”
      1. E-SPORE
    4. Treatment and Care
    5. War Stories
      1. A Mystery Bottleneck
      2. There’s No Place Like
  13. 10. Monitoring
    1. An Overview
    2. Hadoop Metrics
      1. Apache Hadoop 0.20.0 and CDH3 (metrics1)
      2. Apache Hadoop 0.20.203 and Later, and CDH4 (metrics2)
      3. What about SNMP?
    3. Health Monitoring
      1. Host-Level Checks
      2. All Hadoop Processes
      3. HDFS Checks
      4. MapReduce Checks
  14. 11. Backup and Recovery
    1. Data Backup
      1. Distributed Copy (distcp)
      2. Parallel Data Ingestion
    2. Namenode Metadata
  15. A. Deprecated Configuration Properties
  16. Index
  17. About the Author
  18. Colophon
  19. Copyright

Chapter 10. Monitoring

An Overview

It’s hard to talk about building large shared, mission-critical systems without having a way to know their operational state and performance metrics. Most organizations (I hope) have some form of monitoring system that keeps track of various systems that occupy the data center. No one runs a large Hadoop cluster by itself, and while a lot of time is spent on data integration, monitoring integration sometimes falls by the wayside.

Most monitoring systems can be divided into two major components: metric collection and consumption of the resultant data. Hadoop is another source from which metrics should be collected. Consumption of the data can mean presenting aggregate metrics as dashboards, raw metrics as time series data for diagnoses and analysis, and very commonly, rule evaluation for alerting. In fact, many monitoring systems provide more than one of these features. It helps to further divide monitoring into two distinct types: health monitoring, where the goal is to determine that a service is in an expected operational state, and performance monitoring, where the goal is to use regular samples of performance metrics, over time, to gain a better understanding of how the system functions. Performance monitoring tends to be harder to cover outside of the context of a specific environment and set of workloads, so instead we’ll focus primarily on health monitoring.

Hadoop, like most distributed systems, constitutes a monitoring challenge because the ...

The best content for your career. Discover unlimited learning on demand for around $1/day.