You are previewing GPS, GLONASS, Galileo, and BeiDou for Mobile Devices.
O'Reilly logo
GPS, GLONASS, Galileo, and BeiDou for Mobile Devices

Book Description

Get up to speed on all existing GNSS with this practical guide. Covering everything from GPS, GLONASS, Galileo, and BeiDou orbits and signals to multi-GNSS receiver design, AGPS, RTK, and VRS, you will understand the complete global range of mobile positioning systems. Step-by-step algorithms and practical methods provide the tools you need to develop current mobile systems, whilst coverage of cutting edge techniques, such as the instant positioning method, gives you a head-start in unlocking the potential of future mobile positioning. Whether you are an engineer or business manager working in the mobile device industry, a student or researcher, this is your ideal guide to GNSS.

Table of Contents

  1. Coverpage
  2. Half title page
  3. Title page
  4. Copyright page
  5. Contents
  6. Foreword by Glen Gibbons
  7. About this book
  8. Acknowledgments
  9. List of abbreviations and acronyms
  10. List of definitions
  11. Part I GNSS: orbits, signals, and methods
    1. 1 GNSS ground and space segments
      1. 1.1 Ground segment and coordinate reference frames
      2. 1.2 Space segment and time references
        1. 1.2.1 GPS time and calendar time
        2. 1.2.2 Other GNSS time scales
        3. 1.2.3 Onboard clock error
      3. 1.3 Satellite motion description using Keplerian parameters
      4. 1.4 Algorithm for satellite position calculation using standard Keplerian parameters
      5. 1.5 Theoretical background for the spherical harmonics of the Earth’s geopotential
      6. 1.6 Algorithm for transformation of GLONASS almanac parameters into standard Keplerian parameters
      7. 1.7 Medium Earth GNSS orbits
      8. 1.8 GEO and HEO for SBAS
        1. 1.8.1 GEO
        2. 1.8.2 HEO
      9. 1.9 Algorithm for GPS, Galileo, and BeiDou for satellite position calculation using ephemeris in the form of osculating elements
      10. 1.10 Algorithm for GLONASS satellite position calculation using ephemerides in the form of Cartesian vectors
      11. 1.11 Algorithm for GLONASS satellite position calculation accounting for lunar and solar gravitational perturbations
      12. References
    2. 2 GPS, GLONASS, Galileo, and BeiDou signals
      1. 2.1 GNSS signals
        1. 2.1.1 GNSS signals in general
          1. 2.1.1.1 CDMA method
          2. 2.1.1.2 GNSS signal structure
          3. 2.1.1.3 GNSS spread codes: past, present, and future
            1. 2.1.1.3.1 Shift register and memory codes
            2. 2.1.1.3.2 Strange attractor codes
          4. 2.1.1.4 BOC modulation
          5. 2.1.1.5 Data
          6. 2.1.1.6 Tiered code
          7. 2.1.1.7 Pilot channel
        2. 2.1.2 GPS L1 signals
          1. 2.1.2.1 GPS L1 C/A signal
          2. 2.1.2.2 GPS L1C signal
        3. 2.1.3 GLONASS L1 signals
        4. 2.1.4 Galileo signal
        5. 2.1.5 BeiDou signal
      2. 2.2 GNSS signal propagation error models
        1. 2.2.1 Effects of signal propagation through the atmosphere on GNSS
        2. 2.2.2 Algorithms for tropospheric delay calculation
          1. 2.2.2.1 Black and Eisner model
          2. 2.2.2.2 Saastamoinen tropospheric delay model
          3. 2.2.2.3 Niell mapping function
        3. 2.2.3 Algorithms for ionospheric delay calculation
          1. 2.2.3.1 Single-layer ionosphere model
          2. 2.2.3.2 Ionospheric error compensation in GPS and BeiDou receivers
          3. 2.2.3.3 Ionospheric error compensation in GLONASS receivers
          4. 2.2.3.4 Ionospheric error compensation in Galileo receivers
          5. 2.2.3.5 Ionospheric error corrections from GEO/HEO satellites
        4. 2.2.4 Ionospheric error compensation in multi-frequency GNSS receivers
      3. 2.3 GNSS data
        1. 2.3.1 GPS and BeiDou navigation messages
        2. 2.3.2 Galileo navigation message
        3. 2.3.3 Algorithm for constructing GPS/BeiDou/Galileo pseudorange measurements
          1. 2.3.3.1 GPS time mark
          2. 2.3.3.2 BeiDou time mark
          3. 2.3.3.3 Galileo time mark
          4. 2.3.3.4 Pseudorange construction algorithm
        4. 2.3.4 GLONASS navigation message contents and structure
        5. 2.3.5 Subframe of a GLONASS navigation message
          1. 2.3.5.1 Algorithm for reading GLONASS subframe
          2. 2.3.5.2 Subframes containing immediate information
            1. 2.3.5.2.1 Subframe 1
            2. 2.3.5.2.2 Subframe 2
            3. 2.3.5.2.3 Subframe 3
            4. 2.3.5.2.4 Subframe 4
            5. 2.3.5.2.5 Subframe 5
      4. 2.4 What’s in a sat’s name?
        1. 2.4.1 Models
        2. 2.4.2 Signals
        3. 2.4.3 Geometry
        4. 2.4.4 Clock
      5. References
    3. 3 Standalone positioning with GNSS
      1. 3.1 Application of pseudorange observables
        1. 3.1.1 Code phase measurements
        2. 3.1.2 Carrier phase measurements
        3. 3.1.3 Pseudorange equations
        4. 3.1.4 Satellite coordinates
        5. 3.1.5 Minimum number of satellites for positioning
      2. 3.2 Navigation solution algorithms
        1. 3.2.1 Least-squares estimation (LSE) solution
        2. 3.2.2 Analytical solution
        3. 3.2.3 Kalman-filter solution
        4. 3.2.4 Brute-force solution
      3. 3.3 Multi-system positioning
        1. 3.3.1 Generalized equations
        2. 3.3.2 Time-shift calculation using navigation message data
      4. 3.4 Error budget for GNSS observables
        1. 3.4.1 Error budget contents
        2. 3.4.2 Geometrical factors
        3. 3.4.3 Multipath
      5. References
    4. 4 Referenced positioning with GNSS
      1. 4.1 Requirements for code and carrier differential positioning
      2. 4.2 Spatial correlations in error budget
        1. 4.2.1 Decorrelation of satellite orbital errors
        2. 4.2.2 Decorrelation of tropospheric errors
        3. 4.2.3 Decorrelation of ionospheric errors
      3. 4.3 Observables
        1. 4.3.1 Single-difference observables
        2. 4.3.2 Double-difference observables
        3. 4.3.3 GLONASS inter-frequency bias
        4. 4.3.4 Triple-difference observables
        5. 4.3.5 Double-difference equations for multi-systems
      4. 4.4 Real-time kinematic method
        1. 4.4.1 Code and carrier phase difference equations
        2. 4.4.2 RTK positioning algorithm
          1. 4.4.2.1 Float solution
          2. 4.4.2.2 Integer solution
          3. 4.4.2.3 Validation
        3. 4.4.3 Network RTK method
          1. 4.4.3.1 Network of reference stations
          2. 4.4.3.2 Control center
      5. References
  12. Part II From conventional to software GNSS receivers and back
    1. 5 Generic GNSS receivers
      1. 5.1 GNSS receiver overview
        1. 5.1.1 Digest of GNSS receiver operation
        2. 5.1.2 Receiver specification
          1. 5.1.2.1 Specification parameters
            1. 5.1.2.1.1 Accuracy
            2. 5.1.2.1.2 Sensitivity
            3. 5.1.2.1.3 Systems and frequencies
            4. 5.1.2.1.4 Time to first fix
            5. 5.1.2.1.5 Interface
          2. 5.1.2.2 Spec specifics for main application fields
            1. 5.1.2.2.1 Geodetic applications
            2. 5.1.2.2.2 Geophysical applications
            3. 5.1.2.2.3 Aviation applications
            4. 5.1.2.2.4 Mobile applications
          3. 5.1.2.3 Evaluation of parameters
        3. 5.1.3 GNSS receiver design
          1. 5.1.3.1 Hardware and generic receivers
            1. 5.1.3.1.1 Receiver functional model
            2. 5.1.3.1.2 Receiver structural model
      2. 5.2 Receiver components
        1. 5.2.1 Correlators
          1. 5.2.1.1 Signal acquisition
          2. 5.2.1.2 Massive parallel correlation
          3. 5.2.1.3 Coherent signal integration
          4. 5.2.1.4 Frequency resolution
        2. 5.2.2 Receiver channel functions
          1. 5.2.2.1 Tracking loop theory
          2. 5.2.2.2 Tracking loop implementation
            1. 5.2.2.2.1 PLL-aided DLL
            2. 5.2.2.2.2 Coherent tracking with 20 ms coherency interval
            3. 5.2.2.2.3 Coherent tracking with 1 s coherency interval
          3. 5.2.2.3 Lock detectors
          4. 5.2.2.4 Bit synchronization
          5. 5.2.2.5 Measurements
      3. 5.3 GPS/GLONASS receiver
      4. References
    2. 6 Receiver implementation on a general processor
      1. 6.1 Development of the “software approach”
      2. 6.2 Software receiver design
        1. 6.2.1 Baseband processor implementation
        2. 6.2.2 Acquisition implementation
      3. 6.3 Advantages of software receivers
        1. 6.3.1 Software receiver advantages for mobile applications
          1. 6.3.1.1 Potential reduction of required hardware
          2. 6.3.1.2 Upgradeability
          3. 6.3.1.3 Bug fixing
          4. 6.3.1.4 Reduction of new product development cycle
          5. 6.3.1.5 Adaptability to new signals
          6. 6.3.1.6 Change of receiver type
          7. 6.3.1.7 Third-party product involvement
        2. 6.3.2 Software receiver advantages for high-end applications
          1. 6.3.2.1 Flexibility
          2. 6.3.2.2 Access to baseband processor
          3. 6.3.2.3 RF signal post-processing
      4. 6.4 Real-time implementation
        1. 6.4.1 Concurrency
        2. 6.4.2 Bottlenecks in GNSS signal processing
        3. 6.4.3 Algorithmic methods used to speed up processing
          1. 6.4.3.1 Early-minus-late discriminator
          2. 6.4.3.2 Signal decimation
        4. 6.4.4 Hardware-dependent methods
        5. 6.4.5 Software methods
          1. 6.4.5.1 “Bitwise processing – a paradigm for deriving parallel algorithms”
          2. 6.4.5.2 Pre-calculation of replicas
      5. 6.5 Applications of high-end real-time software receivers
        1. 6.5.1 Instant positioning
        2. 6.5.2 Ionosphere monitoring
        3. 6.5.3 Ultra-tightly coupled integration with INS
        4. 6.5.4 Application in education
      6. References
    3. 7 Common approach and common components
      1. 7.1 Common approach for receiver design
      2. 7.2 Mobile antennas
      3. 7.3 TCXO and bandwidth
      4. 7.4 Front end
        1. 7.4.1 Down-converter
        2. 7.4.2 Analog-to-digital converter
      5. 7.5 Navigation processor
      6. References
  13. Part III Mobile positioning at present and in the future
    1. 8 Positioning with data link: from AGPS to RTK
      1. 8.1 Merging mobile and geodetic technologies
      2. 8.2 Application of external information in the baseband processor
        1. 8.2.1 Doppler assistance in acquisition
        2. 8.2.2 Code phase assistance in acquisition
        3. 8.2.3 Doppler assistance in tracking
        4. 8.2.4 Navigation data assistance
      3. 8.3 Application of external information in the navigation processor
        1. 8.3.1 TTFF improvement: snapshot positioning
        2. 8.3.2 Accuracy improvement: RTK positioning
          1. 8.3.2.1 The catch: antennas
          2. 8.3.2.2 Network RTK implementation: virtual reference station RTK system
      4. 8.4 External information content
        1. 8.4.1 Group 1: assistance data
        2. 8.4.2 Group 2: additional parameters
        3. 8.4.3 Group 3: differential corrections
      5. 8.5 Pseudolites
        1. 8.5.1 Pseudolite applications
        2. 8.5.2 Indoor positioning with carrier phase
        3. 8.5.3 Repeaters
      6. References
    2. 9 Positioning without data link: from BGPS to PPP
      1. 9.1 Advantages of positioning without a data link
      2. 9.2 BGPS: instant positioning without network
        1. 9.2.1 Advantages of BGPS
          1. 9.2.1.1 Instant positioning
          2. 9.2.1.2 Power savings
          3. 9.2.1.3 Less interruption during cellular operation
          4. 9.2.1.4 High sensitivity
        2. 9.2.2 History of the approach
        3. 9.2.3 BGPS in a nutshell
        4. 9.2.4 Formalization
        5. 9.2.5 Algorithm criteria
        6. 9.2.6 Required a-priori information
        7. 9.2.7 Time resolution in real time
          1. 9.2.7.1 Task example
          2. 9.2.7.2 Heuristic approach to search strategy
        8. 9.2.8 Preliminary position estimation methods
        9. 9.2.9 Instant positioning implementation in a device
      3. 9.3 Precise positioning without reference station
        1. 9.3.1 From a network to the global network
          1. 9.3.1.1 Global correction information for mobile devices
          2. 9.3.1.2 Free global corrections
          3. 9.3.1.3 Orbit prediction
        2. 9.3.2 Embedded algorithms
          1. 9.3.2.1 Satellite ephemeris interpolation procedure inside mobile device
          2. 9.3.2.2 Precise error models
          3. 9.3.2.3 Filtering
          4. 9.3.2.4 The catch
      4. 9.4 Applications
        1. 9.4.1 Fleet management
        2. 9.4.2 Bird tracking
        3. 9.4.3 Positioning with pilot signals
      5. References
    3. 10 Trends, opportunities, and prospects
      1. 10.1 From Cold War competition to a business model
      2. 10.2 Would you go for a “multi-mighty” receiver?
      3. 10.3 From SDR to SDR we go
      4. 10.4 SA off, AGPS on, mass market open
      5. 10.5 Convergence of mobile and geodetic applications
      6. 10.6 Synergy of the Internet and GNSS
        1. 10.6.1 Integration of a mobile device into the Internet
        2. 10.6.2 The Internet as correction provider
        3. 10.6.3 The Internet as data link
        4. 10.6.4 Improvement in GLONASS accuracy
      7. 10.7 Towards a new GNSS paradigm
        1. 10.7.1 Online updates and upgrades
        2. 10.7.2 Programmable personality change
        3. 10.7.3 Full set of online corrections
        4. 10.7.4 Application of cloud computing technology
        5. 10.7.5 Third-party tools and services
        6. 10.7.6 One for all and all for one
        7. 10.7.7 Offline operation
          1. 10.7.7.1 Network position calculation
          2. 10.7.7.2 AGPS
          3. 10.7.7.3 BGPS
      8. References
  14. Part IV Testing mobile devices
    1. 11 Testing equipment and procedures
      1. 11.1 Testing equipment
        1. 11.1.1 Multi-channel simulator
        2. 11.1.2 RPS: record and playback systems
      2. 11.2 Device life cycle
        1. 11.2.1 Research and development
        2. 11.2.2 Design
        3. 11.2.3 Certification
        4. 11.2.4 Production
        5. 11.2.5 Consumer testing
      3. 11.3 Test examples
        1. 11.3.1 General tests
        2. 11.3.2 AGPS tests
        3. 11.3.3 Multi-GNSS test specifics
      4. 11.4 Case study: new paradigm SDR simulator
      5. References
  15. Index