You are previewing Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy.
O'Reilly logo
Future Trends in Microelectronics: From Nanophotonics to Sensors to Energy

Book Description

In the summer of 2009, leading professionals from industry, government, and academia gathered for a free-spirited debate on the future trends of microelectronics. This volume represents the summary of their valuable contributions. Providing a cohesive exploration and holistic vision of semiconductor microelectronics, this text answers such questions as: What is the future beyond shrinking silicon devices and the field-effect transistor principle? Are there green pastures beyond the traditional semiconductor technologies? This resource also identifies the direction the field is taking, enabling microelectronics professionals and students to conduct research in an informed, profitable, and forward-looking fashion.

Table of Contents

  1. Cover
  2. Halftitle
  3. Title
  4. Copyright
  5. Contents
  6. Preface
  7. Part I Optoelectronics and Nanophotonics
    1. Nanophotonics for Information Systems
    2. What Will Modern Photonics Contribute to the Development of Future Optical Communication Technology?
    3. Ultrafast Nanophotonic Devices For Optical Interconnects
    4. Intersubband Quantum-Box Lasers: Progress and Potential as Uncooled Mid-Infrared Sources
    5. GaSb-based Type-I Laser Diodes Operating at 3 μm and Beyond
    6. Bridging Optics and Electronics with Quantum Cascade Lasers, Antennas, and Circuits
    7. Towards Intersubband Polaritonics: How Fast Can Light and Electrons Mate?
    8. SI3N4/SiO2 Planar Photonic Structures Fabricated by Focused Ion Beam
  8. Part II Electronic Devices and Systems
    1. Silicon-Based Devices and Materials for Nanoscale CMOS and Beyond-CMOS
    2. Device Proposals Beyond Silicon CMOS
    3. GeOI as a Platform for Ultimate Devices
    4. Simulation of Self-Heating Effects in Different SOI MOS Architectures
    5. Nanowires: Technology, Physics and Perspectives
    6. Emerging Nanotechnology for Integration of Nanostructures in Nanoelectronic Devices
    7. Scrolled Si/SiGe Heterostructures as Building Blocks for Tube-Like Field-Effect Transistors
    8. Silicon Nanowire-Based Nonvolatile Memory Cells: Progress and Prospects
    9. Prospects and Challenges of Next-Generation Flash Memory Devices
    10. Chalcogenide Glassy Semiconductors – Could They Replace Silicon in Memory Devices?
    11. Current Status and Recent Developments in RSFQ Processor Design
    12. 1/f Noise: The Funeral is Cancelled (or Postponed)
  9. Part III Physics, Biology, and Other Sister Sciences
    1. Spin Hall Effect
    2. Can Biology Provide Creative Solutions for Next-Generation Memory Devices?
    3. Spin Screening of Magnetization Due to Inverse Proximity Effect in Superconducting/Ferromagnetic Bilayers
    4. Silicon for Spintronic Applications: Strain-Enhanced Valley Splitting
    5. Graphene-Based Terahertz Devices: Concepts and Characteristics
    6. Directed Self-Assembly – A Controllable Route to Optical and Electronic Devices Based on Single Nanostructures
  10. Part IV Sensors, Detectors, and Energy
    1. Three-Dimensional Position-Sensitive Wide Bandgap Semiconductor Gamma-Ray Imaging Detectors
    2. Semiconductor Scintillator for Three-Dimensional Array of Radiation Detectors
    3. Semiconductor Gamma Radiation Detectors: Band Structure Effects in Energy Resolution
    4. The Future of Microelectronics is ... Macroelectronics
    5. An Integration Challenge: Information and Communication Technologies to Address Indoor Air Quality in Commercial Buildings
    6. Quantum-Dot Infrared Photodetectors: In Search of the Right Design for Room-Temperature Operation
    7. Treating the Case of Incurable Hysteresis in V02
    8. Exploratory Studies on Silicon-Based Oxide Fuel Cell Power Sources Incorporating Ultrathin Nanostructured Platinum and Cerium Oxide Films as Anode Components
  11. Index