You are previewing Functional Programming in C#: Classic Programming Techniques for Modern Projects.

Functional Programming in C#: Classic Programming Techniques for Modern Projects

  1. Cover
  2. Title
  3. Copyright
  4. About the Author
  5. Credits
  6. Contents
  7. Introduction
  8. Part I : Introduction to Functional Programming
    1. Chapter 1 : A Look at Functional Programming History
      1. What Is Functional Programming?
      2. Functional Languages
      3. The Relationship to Object Oriented Programming
      4. Summary
    2. Chapter 2 : Putting Functional Programming into a Modern Context
      1. Managing Side Effects
      2. Agile Programming Methodologies
      3. Declarative Programming
      4. Functional Programming Is a Mindset
      5. Is Functional Programming in C# a Good Idea?
      6. Summary
  9. Part II : C# Foundations of Functional Programming
    1. Chapter 3 : Functions, Delegates, and Lambda Expressions
      1. Functions and Methods
      2. Reusing Functions
      3. Anonymous Functions and Lambda Expressions
      4. Extension Methods
      5. Referential Transparency
      6. Summary
    2. Chapter 4 : Flexible Typing with Generics
      1. Generic Functions
      2. Generic Classes
      3. Constraining Types
      4. Other Generic Types
      5. Covariance and Contravariance
      6. Summary
    3. Chapter 5 : Lazy Listing with Iterators
      1. The Meaning of Laziness
      2. Enumerating Things with .NET
      3. Implementing Iterator Functions
      4. Chaining Iterators
      5. Summary
    4. Chapter 6 : Encapsulating Data in Closures
      1. Constructing Functions Dynamically
      2. The Problem with Scope
      3. How Closures Work
      4. Summary
    5. Chapter 7 : Code Is Data
      1. Expression Trees in .NET
      2. Analyzing Expressions
      3. Generating Expressions
      4. .NET 4.0 Specifics
      5. Summary
  10. Part III : Implementing Well-known Functional Techniques in C#
    1. Chapter 8 : Currying and Partial Application
      1. Decoupling Parameters
      2. Calling Parts of Functions
      3. Why Parameter Order Matters
      4. Summary
    2. Chapter 9 : Lazy Evaluation
      1. What’s Good about Being Lazy?
      2. Passing Functions
      3. Explicit Lazy Evaluation
      4. Comparing the Lazy Evaluation Techniques
      5. How Lazy Can You Be?
      6. Summary
    3. Chapter 10 : Caching Techniques
      1. The Need to Remember
      2. Precomputation
      3. Memoization
      4. Summary
    4. Chapter 11 : Calling Yourself
      1. Recursion in C#
      2. Tail Recursion
      3. Accumulator Passing Style
      4. Continuation Passing Style
      5. Indirect Recursion
      6. Summary
    5. Chapter 12 : Standard Higher Order Functions
      1. Applying Operations: Map
      2. Map, Filter, and Fold in LINQ
      3. Standard Higher Order Functions
      4. Summary
    6. Chapter 13 : Sequences
      1. Understanding List Comprehensions
      2. A Functional Approach to Iterators
      3. Ranges
      4. Restrictions
      5. Summary
    7. Chapter 14 : Constructing Functions from Functions
      1. Composing Functions
      2. Advanced Partial Application
      3. Combining Approaches
      4. Summary
    8. Chapter 15 : Optional Values
      1. The Meaning of Nothing
      2. Implementing Option(al) Values
      3. Summary
    9. Chapter 16 : Keeping Data from Changing
      1. Change Is Good — not!
      2. False Assumptions
      3. Implementing Immutable Container Data Structures
      4. Alternatives to Persistent Data Types
      5. Summary
    10. Chapter 17 : Monads
      1. What’s in a Typeclass?
      2. What’s in a Monad?
      3. Why Do a Whole Abstraction?
      4. A Second Monad: Logging
      5. Syntactic Sugar
      6. Binding with SelectMany?
      7. Summary
  11. Part IV : Putting Functional Programming into Action
    1. Chapter 18 : Integrating Functional Programming Approaches
      1. Refactoring
      2. Writing New Code
      3. Finding Likely Candidates for Functional Programming
      4. Summary
    2. Chapter 19 : The MapReduce Pattern
      1. Implementing MapReduce
      2. Abstracting the Problem
      3. Summary
    3. Chapter 20 : Applied Functional Modularization
      1. Executing SQL Code from an Application
      2. Rewriting the Function with Partial Application and Precomputation in Mind
      3. Summary
    4. Chapter 21 : Existing Projects Using Functional Techniques
      1. The .NET Framework
      2. LINQ
      3. Google MapReduce and Its Implementations
      4. NUnit
      5. Summary
  12. Index
O'Reilly logo

IMPLEMENTING ITERATOR FUNCTIONS

C#’s iterator feature, introduced in C# version 2.0, allows you to create implementations of the IEnumerable/IEnumerator combination without ever implementing either of those interfaces manually. It goes even farther by supporting the generic interfaces in addition to the non-generic ones, and making it possible to implement IEnumerator only.

Typically, it is only necessary to implement a function with a particular return type to use this feature. The second criterion the compiler looks for in order to apply its transformations (more about that in a moment) is the use of at least one of several special keywords within that function. Most common is the yield return statement. For example, the earlier EndlessList example can be implemented as a C# iterator like this (using a generic interface for a change):

public static IEnumerable<int> EndlessListFunction( ) {

  int val = 0;

  while (true)

    yield return val++;

}

To understand how to work with this, it’s easiest to take it literally. The return type of the function is an IEnumerable<int>, so you use it in the same places where you might otherwise use a class instance that implements this interface. Here’s some code that iterates through the EndlessListFunction sequence:

var list = EndlessListFunction( );

foreach (var item in list)

  Console.WriteLine(item);

The C# compiler automatically creates a class that implements the interface IEnumerable<int>. The logic of that class and the corresponding ...

The best content for your career. Discover unlimited learning on demand for around $1/day.