O'Reilly logo

Foundation Mathematics for the Physical Sciences by K. F. Riley, M. P. Hobson

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

7

Partial differentiation

In Chapters 3 and 4 we discussed functions f of only one variable x, which were usually written f(x). Certain constants and parameters may also have appeared in the definition of f, e.g. f(x) = ax + 2 contains the constant 2 and the parameter a, but only x was considered as a variable and only the derivatives f(n)(x) = dnf/dxn were defined.

However, we can equally well consider functions that depend on more than one variable, e.g. the function f(x, y) = x2 + 3xy, which depends on the two variables x and y. For any pair of values x, y, the function f(x, y) has a well-defined value, e.g. f(2, 3) = 22. This notion can clearly be extended to functions dependent on more than two variables. For the n-variable case, we write ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required