O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Extending Machine Learning Algorithms

Video Description

In-depth explanation of machine learning algorithms

About This Video

  • Introduce various tree-based machine learning models
  • Implement k-nearest neighbors using breast cancer data
  • Evaluate recommendation on movie lens data
  • Perform SVM classification with letter recognition data example

In Detail

Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. We will use libraries such as scikit-learn, e1071, randomForest, c50, xgboost, and so on.We will discuss the application of frequently used algorithms on various domain problems, using both Python and R programming.It focuses on the various tree-based machine learning models used by industry practitioners.We will also discuss k-nearest neighbors, Naive Bayes, Support Vector Machine and recommendation engine.By the end of the course, you will have mastered the required statistics for Machine Learning Algorithm and will be able to apply your new skills to any sort of industry problem.