## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

# 13.4. Tackling Troublesome Problems

## Problem

You're dealing with a particularly troublesome optimization problem where you can't seem to converge on a global optimum. For example, Solver converges to several different solutions given different initial values. You suspect Solver is converging to local optima rather than a true global optimum solution.

## Solution

Getting trapped by local maxima or minima is an unfortunate part of optimization. Some problems are just riddled with local extrema over their objective function landscape and, depending on your assumed initial guess, you may end up in one of these locally optimum solutions rather than finding a globally optimum solution. One way around this is to select different initial guesses just as I discussed in Chapter 9 when finding multiple roots of a nonlinear equation. Also, if possible, you should plot the objective function to get a feel for how it behaves. This is not always possible for multidimensional problems, though.

As an alternative, you can use a Monte Carlo-inspired approach by repeatedly using Solver for many initial guesses. The following discussion shows you how.

## Discussion

Take a look at the function plotted in Figure 13-9.

This function wreaks havoc on Solver. The equation for this function is:

Let's look at this function from a different angle. Check out Figure 13-10.

Figure 13-10. Cross-section ...

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required