You are previewing Engineering Physics.
O'Reilly logo
Engineering Physics

Book Description

Engineering Physics is designed to cater to the needs of first year undergraduate engineering students. Written in a lucid style, this book assimilates the best practices of conceptual pedagogy, dealing at length with various topics such as crystallography, principles of quantum mechanics, free electron theory of metals, dielectric and magnetic properties, semiconductors, nanotechnology, etc.

Table of Contents

  1. Cover
  2. Title Page
  3. Brief Contents
  4. Contents
  5. Preface
  6. 1. Bonding in Solids
    1. 1.1 Different types of bonding in solids
    2. 1.2 Cohesive energy and estimation of cohesive energy of ionic solids
    3. 1.3 Estimation of cohesive energy of NaCl molecule in a solid
    4. 1.4 Madelung constant
    5. Formulae
    6. Solved Problems
    7. Multiple–choice Questions
    8. Answers
    9. Review Questions
  7. 2. Crystal Structures
    1. 2.1 Introduction
    2. 2.2 Space lattice (or) crystal lattice
    3. 2.3 The basis and crystal structure
    4. 2.4 Unit cell and lattice parameters
    5. 2.5 Crystal systems and Bravais lattices
    6. 2.6 Structure and packing fractions of simple cubic [SC] structure
    7. 2.7 Structure and packing fractions of body–centred cubic structure [BCC]
    8. 2.8 Structure and packing fractions of face–centred cubic [FCC] structure
    9. 2.9 Diamond cubic structure
    10. 2.10 NaCl crystal structure
    11. 2.11 Caesium chloride [CsCl] structure
    12. 2.12 Zinc sulphide [ZnS] structure
    13. 2.13 Stacking sequence in metallic crystals
    14. 2.14 Calculation of lattice constant
    15. Solved Problems
    16. Multiple–choice Questions
    17. Answers
    18. Review Questions
  8. 3. Crystal Planes, X–ray Diffraction and Defects in Solids
    1. 3.1 Crystal planes, directions and Miller indices
    2. 3.2 Distance of separation between successive hkl planes
    3. 3.3 Imperfections in crystals
    4. 3.4 Energy for the formation of a vacancy and number of vacancies – at equilibrium concentration
    5. 3.5 Diffraction of X-rays by crystal planes and Bragg’s law
    6. 3.6 Powder method
    7. 3.7 Laue method
    8. Formulae
    9. Solved Problems
    10. Multiple-choice Questions
    11. Answers
    12. Review Questions
  9. 4. Elements of Statistical Mechanics and Principles of Quantum Mechanics
    1. 4.1 Introduction
    2. 4.2 Phase space
    3. 4.3 Maxwell–Boltzmann distribution
    4. 4.4 Fermi–Dirac distribution
    5. 4.5 Bose–Einstein distribution
    6. 4.6 Comparison of Maxwell–Boltzmann, Fermi–Dirac and Bose–Einstein distributions
    7. 4.7 Photon gas
    8. 4.8 Concept of electron gas and Fermi energy
    9. 4.9 Density of electron states
    10. 4.10 Black body radiation
    11. 4.11 Waves and particles—de Broglie hypothesis—Matter waves
    12. 4.12 Relativistic correction
    13. 4.13 Planck's quantum theory of black body radiation
    14. 4.14 Experimental study of matter waves
    15. 4.14 Schrodinger's time–independent wave equation
    16. 4.15 Heisenberg uncertainty principle
    17. 4.16 Physical significance of the wave function
    18. 4.17 Particle in a potential box
    19. Formulae
    20. Solved Problems
    21. Multiple–choice Questions
    22. Answers
    23. Review Questions
  10. 5. Electron Theory of Metals
    1. 5.1 Introduction
    2. 5.2 Classical free electron theory of metals
    3. 5.3 Relaxation time, mean free path, mean collision time and drift velocity
    4. 5.4 Fermi-Dirac distribution
    5. 5.5 Quantum free electron theory of electrical conduction
    6. 5.6 Sources of electrical resistance
    7. 5.7 Band theory of solids
    8. 5.8 Bloch theorem
    9. 5.9 Origin of energy bands formation in solids
    10. 5.10 Velocity and effective mass of an electron
    11. 5.11 Distinction between metals, semiconductors and insulators
    12. Formulae
    13. Solved Problems
    14. Multiple–choice Questions
    15. Answers
    16. Review Questions
  11. 6. Dielectric Properties
    1. 6.1 Introduction
    2. 6.2 Dielectric constant
    3. 6.3 Internal or local field
    4. 6.4 Clausius–Mosotti relation
    5. 6.5 Orientational, ionic and electronic polarizations
    6. 6.6 Frequency dependence of polarizability: (Dielectrics in alternating fields)
    7. 6.7 Piezoelectricity
    8. 6.8 Ferroelectricity
    9. 6.9 Frequency dependence of dielectric constant
    10. 6.10 Important requirements of insulators
    11. Formulae
    12. Solved Problems
    13. Multiple–choice Questions
    14. Answers
    15. Review Questions
  12. 7. Magnetic Properties
    1. 7.1 Magnetic permeability
    2. 7.2 Magnetization (M)
    3. 7.3 Origin of magnetic moment—Bohr magneton—electron spin
    4. 7.4 Classification of magnetic materials
    5. 7.5 Classical theory of diamagnetism [Langevin theory]
    6. 7.6 Theory of paramagnetism
    7. 7.7 Domain theory of ferromagnetism
    8. 7.8 Hysteresis curve
    9. 7.9 Anti-ferromagnetic substance
    10. 7.10 Ferrimagnetic substances [Ferrites]
    11. 7.11 Soft and hard magnetic materials
    12. 7.12 Applications of ferrites
    13. Formulae
    14. Solved Problems
    15. Multiple–choice Questions
    16. Answers
    17. Review Questions
  13. 8. Semiconductors and Physics of Semiconductor Devices
    1. 8.1 Introduction
    2. 8.2 Intrinsic semiconductors—carrier concentration
    3. 8.3 Electrical conductivity of a semiconductor
    4. 8.4 Extrinsic semiconductors
    5. 8.5 Carrier concentration in extrinsic semiconductors
    6. 8.6 Minority carrier life time
    7. 8.7 Drift and diffusion currents
    8. 8.8 Einstein's relations
    9. 8.9 Continuity equation
    10. 8.10 Hall effect
    11. 8.11 Direct and indirect band gap semiconductors
    12. 8.12 Formation of p-n junction
    13. 8.13 Energy band diagram of p-n diode
    14. 8.14 Diode equations
    15. 8.15 p-n junction biasing
    16. 8.16 V-I characteristics of p-n diode
    17. 8.17 p-n diode rectifier
    18. 8.18 Light emitting diode [LED]
    19. 8.19 Liquid crystal display (LCD)
    20. 8.20 Liquid crystal display (LCD)
    21. Formulae
    22. Solved Problems
    23. Multiple–choice Questions
    24. Answers
    25. Review Questions
  14. 9. Superconductivity
    1. 9.1 Introduction
    2. 9.2 General features of superconductors
    3. 9.3 General features of superconductors
    4. 9.4 Penetration depth
    5. 9.5 Flux quantization
    6. 9.6 Quantum tunnelling
    7. 9.7 Josephson’s effect
    8. 9.8 BCS theory
    9. 9.9 Applications of superconductivity
    10. Formulae
    11. Solved Problems
    12. Multiple–choice Questions
    13. Answers
    14. Review Questions
  15. 10. Lasers
    1. 10.1 Introduction
    2. 10.2 Characteristics of laser radiation
    3. 10.3 Spontaneous and stimulated emission
    4. 10.4 Einstein’s coefficients
    5. 10.5 Population inversion
    6. 10.6 Helium-Neon gas [He-Ne] laser
    7. 10.7 Ruby laser
    8. 10.8 Semiconductor lasers
    9. 10.9 Carbon dioxide laser
    10. 10.10 Applications of lasers
    11. Formulae
    12. Solved Problems
    13. Multiple–choice Questions
    14. Answers
    15. Review Questions
  16. 11. Fibre Optics
    1. 11.1 Introduction
    2. 11.2 Principle of optical fibre, acceptance angle and acceptance cone
    3. 11.3 Numerical aperture (NA)
    4. 11.4 Step index fibres and graded index fibres—transmission of signals in them
    5. 11.5 Differences between step index fibres and graded index fibres
    6. 11.6 Differences between single mode fibres and multimode fibres
    7. 11.7 Attenuation in optical fibres
    8. 11.8 Optical fibres in communication
    9. 11.9 Advantages of optical fibres in communication
    10. 11.10 Fibre optic sensing applications
    11. 11.11 Applications of optical fibers in medical field
    12. Formulae
    13. Solved Problems
    14. Multiple–choice Questions
    15. Answers
    16. Review Questions
  17. 12. Holography
    1. 12.1 Introduction
    2. 12.2 Basic principle of holography
    3. 12.3 Basic principle of holography
    4. 12.4 Reconstruction of image from a hologram
    5. 12.5 Reconstruction of image from a hologram
    6. Multiple–choice Questions
    7. Answers
    8. Review Questions
  18. 13. Acoustics of Buildings and Acoustic Quieting
    1. 13.1 Introduction to acoustics of buildings
    2. 13.2 Reverberation and time of reverberation
    3. 13.3 Sabine’s empirical formula for reverberation time
    4. 13.4 Sabine’s reverberation theory for reverberation time
    5. 13.5 Absorption coefficient of sound and its measurement
    6. 13.6 Basic requirements of an acoustically good hall
    7. 13.7 Factors affecting architectural acoustics and their remedies
    8. 13.8 Acoustic quieting
    9. 13.9 Methods of quieting
    10. 13.10 Quieting for specific observers
    11. 13.11 Muffler (or silencer)
    12. 13.12 Sound proofing
    13. Formulae
    14. Solved Problems
    15. Multiple–choice Questions
    16. Answers
    17. Review Questions
  19. 14. Nanotechnology
    1. 14.1 Basic principle of nanoscience and nanotechnology
    2. 14.2 Physical properties
    3. 14.3 Chemical properties
    4. 14.4 Fabrication
    5. 14.5 Production of nanoparticle
    6. 14.6 Carbon nanotubes
    7. 14.7 Applications of nanotechnology
    8. Multiple–choice Questions
    9. Answers
    10. Review Questions
  20. 15. Optics
    1. 15.1 Introduction
    2. 15.2 Conditions for sustained interference
    3. 15.3 Young’s double slit experiment
    4. 15.4 Coherence
    5. 15.5 Newton’s rings
    6. 15.6 Introduction
    7. 15.7 Fresnel and Fraunhofer diffraction
    8. 15.8 Fraunhofer diffraction at single slit
    9. 15.9 Fraunhofer diffraction at double slit
    10. 15.10 Fraunhofer diffraction at a circular aperture
    11. 15.11 Plane diffraction grating [Diffraction at n slits]
    12. 15.12 Grating spectrum
    13. 15.13 Rayleigh’s criterion for resolving power
    14. 15.14 Resolving power of a plane transmission grating
    15. 15.15 Introduction
    16. 15.16 General concept of polarization
    17. 15.17 Representation of polarized and unpolarized light
    18. 15.18 Plane of vibration and plane of polarization
    19. 15.19 Plane, circularly and elliptically polarized light
    20. 15.20 Polarization by reflection
    21. 15.21 Brewster’s law
    22. 15.22 Double refraction
    23. 15.23 Ordinary and extraordinary rays
    24. 15.24 Nicol prism
    25. 15.25 Polaroid
    26. 15.26 Quarter-wave plate
    27. 15.27 Half-wave plate
    28. 15.28 Theory of circular and elliptically polarized light
    29. Formulae
    30. Solved Problems
    31. Multiple–choice Questions
    32. Answers
    33. Review Questions
  21. 16. Non-destructive Testing Using Ultrasonics
    1. 16.1 Introduction
    2. 16.2 Principle of ultrasonic testing
    3. 16.3 Ultrasonic flaw detector
    4. 16.4 Ultrasonic transducer
    5. 16.5 Couplant
    6. 16.6 Inspection methods—Pulse echo testing technique
    7. 16.7 Different types of scans
    8. 16.8 Inspection standards [Reference standards or calibration blocks]
    9. 16.9 Applications of ultrasonics in NDT
    10. Multiple–choice Questions
    11. Answers
    12. Review Questions
  22. 17. Nuclear Physics
    1. 17.1 Nuclear liquid drop model
    2. 17.2 Semi-empirical mass formula
    3. 17.3 Shell model
    4. 17.4 Linear particle accelerator
    5. 17.5 Cyclotron
    6. 17.6 The betatron
    7. 17.7 Synchrocyclotron or frequency-modulated cyclotron
    8. 17.8 Synchrotron
    9. 17.9 Geiger-Muller counter (G-M counter)
    10. 17.10 Motion of charged particles in electric and magnetic fields
    11. 17.11 Bainbridge mass spectrograph
    12. 17.12 Aston mass spectrograph
    13. Formulae
    14. Solved Problems
    15. Multiple–choice Questions
    16. Answers
    17. Review Questions
  23. 18. Electromagnetic Waves
    1. 18.1 Introduction
    2. 18.2 Electromagnetic wave equation
    3. 18.3 Transverse nature of electromagnetic waves
    4. 18.4 Relation between and of plane electro-magnetic waves in free space
    5. 18.5 Scalar and vector magnetic potentials
    6. 18.6 Poynting theorem
    7. 18.7 Electromagnetic wave propagation in free space
    8. 18.8 Wave propagation in a conducting medium
    9. 18.9 Propagation of electromagnetic waves in ionized gaseous medium [plasma medium]
    10. Formulae
    11. Solved Problems
    12. Multiple–choice Questions
    13. Answers
    14. Review Questions
  24. 19. Special theory of Relativity: Relativistic Mechanics
    1. 19.1 Introduction
    2. 19.2 Frame of reference
    3. 19.3 Galilean transformations
    4. 19.4 Absolute frame of reference and ether
    5. 19.5 The Michelson-Morley experiment
    6. 19.6 Postulates of special theory of relativity
    7. 19.7 Lorentz transformation of space and time
    8. 19.8 Length contraction
    9. 19.9 Time dilation
    10. 19.10 Concept of simultaneity
    11. 19.11 Addition of velocities
    12. 19.12 Variation of mass with velocity
    13. 19.13 Mass-energy equivalence
    14. 19.14 Energy and momentum relation
    15. Formulae
    16. Solved Problems
    17. Multiple–choice Questions
    18. Answers
    19. Review Questions
  25. Notes
  26. Acknowledgements
  27. Copyright
  28. Back Cover