You are previewing Emerging Physics.
O'Reilly logo
Emerging Physics

Book Description

This book is designed as per the new Curriculum conceived for the students of B.Sc. (Physics). Although the approach is primarily qualitative, a reasonably large number of illustrative examples and segregated exercises are included, wherever possible, to ensure that the students develop a taste of real rigour of physics.

Table of Contents

  1. Cover
  2. Title Page
  3. Contents
  4. About the Authors
  5. Dedication
  6. Preface
  7. 1 - History and Philosophy of Physics
    1. 1.1 - Physics Today
    2. 1.2 - Physics in the Pre-Modern Era
      1. 1.2.1 - Early Thought
      2. 1.2.2 - Ancient Indian Philosophy
      3. 1.2.3 - Philosophy of the Ancient Greeks
      4. 1.2.4 - Astronomy in the Ancient Times
      5. 1.2.5 - Some Aspects of the Methodology of Ancient Philosophers
      6. 1.2.6 - Zeno's Paradox
      7. 1.2.7 - The Middle Ages and the Islamic Contribution
    3. 1.3 - The Sixteenth and Seventeenth Centuries: Renaissance in Science and the Scientific Revolution
      1. 1.3.1 - The Copernican Revolution
      2. 1.3.2 - Explaining Astronomical Observations: Planetary Orbits
      3. 1.3.3 - Galileo Galilei
      4. 1.3.4 - The Method of Science
      5. 1.3.5 - Isaac Newton and his Contemporaries
    4. 1.4 - Post-Newtonian Classical Physics up to the Nineteenth Century
      1. 1.4.1 - Heat
      2. 1.4.2 - Optics
      3. 1.4.3 - Electromagnetism
      4. 1.4.4 - Atomic Structure
      5. 1.4.5 - Mechanics
    5. 1.5 - The Wave–Particle Seesaw of Light
      1. 1.5.1 - Black-Body Radiation
      2. 1.5.2 - Further Evidence for the Particle Model of Light
    6. 1.6 - From Classical to Quantum Mechanics
      1. 1.6.1 - The Bohr Atom
    7. 1.7 - Development of Quantum Mechanics
      1. 1.7.1 - Bose and his Statistics
      2. 1.7.2 - Pauli's Exclusion Principle
      3. 1.7.3 - Uncertainly Principle
      4. 1.7.4 - Relativistic Quantum Mechanics
    8. 1.8 - Some Other Major Contributions in the Twentieth Century
      1. 1.8.1 - Astronomy
      2. 1.8.2 - Sub-atomic Physics
      3. 1.8.3 - Solid-State Physics and Electronics
      4. 1.8.4 - Extraordinary Contributors
    9. 1.9 - Indian Scientists
      1. 1.9.1 - Jagdish Chandra Bose
      2. 1.9.2 - Sir Chandrashekhara Venkata Raman
      3. 1.9.3 - Meghnad Saha
      4. 1.9.4 - Satyendra Nath Bose
      5. 1.9.5 - Subrahmanyan Chandrashekhar
    10. 1.10 - Philosophical Aspects
      1. 1.10.1 - Universal Law of Gravitation
      2. 1.10.2 - Coulomb's Law
      3. 1.10.3 - Planck's Law
      4. 1.10.4 - Bohr's Hydrogen Atom
      5. 1.10.5 - Special Theory of Relativity
      6. 1.10.6 - The Ether Hypothesis
      7. 1.10.7 - The Quantitative Nature of Physics
      8. 1.10.8 - On the Language of Physics
      9. 1.10.9 - The Message
  8. 2 - Lasers and Laser Applications
    1. 2.1 - Introduction
    2. 2.2 - Interaction of Radiation With Matter
    3. 2.3 - Einstein's Prediction
      1. 2.3.1 - Important Features of Stimulated Emission
    4. 2.4 - Metastable State
      1. 2.4.1 - Population of Atoms
      2. 2.4.2 - Einstein's Relations
      3. 2.4.3 - Population Inversion
      4. 2.4.4 - Active Medium
    5. 2.5 - Laser Pumping
      1. 2.5.1 - Three-level Pumping Scheme
      2. 2.5.2 - Four-level Pumping Scheme
    6. 2.6 - Optical Feedback
      1. 2.6.1 - The Stable Configuration
    7. 2.7 - Characteristics of Lasers
    8. 2.8 - Types of Lasers
      1. 2.8.1 - Ruby Laser
      2. 2.8.2 - Helium–Neon Laser
    9. 2.9 - Applications of Lasers
      1. 2.9.1 - Medicine
      2. 2.9.2 - Optical Communication
      3. 2.9.3 - Defence
      4. 2.9.4 - Mechanical Industry
      5. 2.9.5 - Electronic Industry
      6. 2.9.6 - Consumer Electronic Industry
      7. 2.9.7 - Nuclear Energy
      8. 2.9.8 - Holography
      9. 2.9.9 - Fundamental Research
  9. 3 - Sensors and Transducers
    1. 3.1 - Introduction
    2. 3.2 - Electrical Transducers
    3. 3.3 - Selecting a Transducer
    4. 3.4 - Temperature Sensors
      1. 3.4.1 - Thermocouple
      2. 3.4.2 - Thermocouple Materials
      3. 3.4.3 - Thermistors
      4. 3.4.4 - Platinum Resistance Thermometers
      5. 3.4.5 - IC Temperature Sensors (Integrated Circuit Temperature Sensors)
      6. 3.4.6 - Quartz Thermometer
      7. 3.4.7 - Pyrometers
    5. 3.5 - Light Sensors
      1. 3.5.1 - Vacuum-Type Photocell
      2. 3.5.2 - Gas-Filled Photocell
      3. 3.5.3 - Photomultiplier Tubes
      4. 3.5.4 - Photoconductive Cells (LDRs)
      5. 3.5.5 - Photodiode
      6. 3.5.6 - Phototransistors
      7. 3.5.7 - Photothyristors
      8. 3.5.8 - Photovoltaic Cells
  10. 4 - Bioelectricity
    1. 4.1 - Electricity Observed in Living Systems
      1. 4.1.1 - Introduction
    2. 4.2 - Origin of Bioelectricity
      1. 4.2.1 - Electric Properties of the Biological Membrane
    3. 4.3 - Neuron Structure and Function
      1. 4.3.1 - Nervous System
      2. 4.3.2 - Nervous System of Humans
      3. 4.3.3 - Neurons
    4. 4.4 - An Axon as a Cable
    5. 4.5 - Membrane Resistance and Capacitance
    6. 4.6 - Sodium and Potassium Transport
    7. 4.7 - Resting Potential and Action Potential
    8. 4.8 - Conduction Velocity
      1. 4.8.1 - Ionic Theory of Nerve Impulse
      2. 4.8.2 - Transmission of Nerve Impulse Along the Nerve Fibre
      3. 4.8.3 - Saltatory Conduction of Nerve Impulse
    9. 4.9 - Nernst Equation
    10. 4.10 - Applications of Bioelectricity
      1. 4.10.1 - Electrocardiogram
      2. 4.10.2 - Electroencephalogram
      3. 4.10.3 - Electromyogram
      4. 4.10.4 - Electroretinogram
      5. 4.10.5 - Electrooculograph
  11. 5 - Nanomaterials
    1. 5.1 - Introduction
      1. 5.1.1 - A Brief History of Nanotechnology
    2. 5.2 - Nanoscience
      1. 5.2.1 - What is Nanoscience?
      2. 5.2.2 - How Do We Study Nanoscale Objects?
      3. 5.2.3 - Impact of Nanoscience
    3. 5.3 - Quantum Size Effect
      1. 5.3.1 - Quantum Confinement
      2. 5.3.2 - Particle in a Box
      3. 5.3.3 - Quantum Dot
      4. 5.3.4 - Quantum Wire
      5. 5.3.5 - Modelling of Quantum Size Effect
    4. 5.4 - Surface and Interface Effects
    5. 5.5 - What Makes Nanoscience So Special?
      1. 5.5.1 - Optical Properties
      2. 5.5.2 - Electrical Properties
      3. 5.5.3 - Chemical Properties
      4. 5.5.4 - Mechanical Properties
      5. 5.5.5 - Magnetic Properties
      6. 5.5.6 - Melting Temperature
      7. 5.5.7 - Structural Properties
    6. 5.6 - Preparing Nanoscale Materials
      1. 5.6.1 - Top-Down Approach
      2. 5.6.2 - Bottom-Up Approach
      3. 5.6.3 - Chemical Methods
      4. 5.6.4 - Physical Methods
    7. 5.7 - Biomimicking (Biological Nanomaterials)
      1. 5.7.1 - Microelectromechanical System
      2. 5.7.2 - Nanoelectromechanical Systems
    8. 5.8 - Carbon—A Special Material
      1. 5.8.1 - Nanoscale Miracles
    9. 5.9 - Nanoethics
      1. 5.9.1 - The Good Things About Nanotechnology
      2. 5.9.2 - The Bad Things About Nanotechnology
  12. Appendix
  13. Acknowledgements
  14. Notes
  15. Copyright