Foreword

Over the last decades, the electrical power system has gone through a fundamental transformation never seen before. The liberalisation of the power industry that set the whole process in motion has opened up the possibility of electricity trading across utility and even national boundaries. The distance between where power is generated and where the final consumption takes place and with it the power transit through the high voltage transmission lines has increased immensely. A further development compounding the competitive electricity market and power transmission over long distances has been the large-scale installation of renewables-based power generation units. In addition to the volatility and stochasticity of the power outputs of these units, utilities now also have to contend with possible bi-directional power flows in the distribution networks.

Due to the different dynamic characteristics of renewable generation units compared with conventional power plants, the increasing share of renewables-based generation capacity in the system can give rise to new dynamic phenomena that can reduce the existing security of the whole system. Additionally, restrictions regarding expansion or reinforcement of the existing network mean that lines have to be loaded up to or near their maximum current carrying capabilities. It can thus be safely concluded that the increasing uncertainty regarding load flows and the use of power plants in a heavily loaded network, together with ...

Get Dynamic Vulnerability Assessment and Intelligent Control now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.