O'Reilly logo

Data Algorithms by Mahmoud Parsian

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 1. Secondary Sort: Introduction

A secondary sort problem relates to sorting values associated with a key in the reduce phase. Sometimes, it is called value-to-key conversion. The secondary sorting technique will enable us to sort the values (in ascending or descending order) passed to each reducer. I will provide concrete examples of how to achieve secondary sorting in ascending or descending order.

The goal of this chapter is to implement the Secondary Sort design pattern in MapReduce/Hadoop and Spark. In software design and programming, a design pattern is a reusable algorithm that is used to solve a commonly occurring problem. Typically, a design pattern is not presented in a specific programming language but instead can be implemented by many programming languages.

The MapReduce framework automatically sorts the keys generated by mappers. This means that, before starting reducers, all intermediate key-value pairs generated by mappers must be sorted by key (and not by value). Values passed to each reducer are not sorted at all; they can be in any order. What if you also want to sort a reducer’s values? MapReduce/Hadoop and Spark do not sort values for a reducer. So, for those applications (such as time series data) in which you want to sort your reducer data, the Secondary Sort design pattern enables you to do so.

First we’ll focus on the MapReduce/Hadoop solution. Let’s look at the MapReduce paradigm and then unpack the concept of the secondary sort:

  • map(key1, value1) → list(key2, value2)

  • reduce(key2, list(value2)) → list(key3, value3)

First, the map() function receives a key-value pair input, (key1, value1). Then it outputs any number of key-value pairs, (key2, value2). Next, the reduce() function receives as input another key-value pair, (key2, list(value2)), and outputs any number of (key3, value3) pairs.

Now consider the following key-value pair, (key2, list(value2)), as an input for a reducer:

  • list(value2) = (V1, V2, ..., Vn)

where there is no ordering between reducer values (V1, V2, ..., Vn).

The goal of the Secondary Sort pattern is to give some ordering to the values received by a reducer. So, once we apply the pattern to our MapReduce paradigm, then we will have:

  • SORT(V1, V2, ..., Vn) = (S1, S2, ..., Sn)

  • list(value2) = (S1, S2, ..., Sn)

where:

  • S1 < S2 < ... < Sn (ascending order), or

  • S1 > S2 > ... > Sn (descending order)

Here is an example of a secondary sorting problem: consider the temperature data from a scientific experiment. A dump of the temperature data might look something like the following (columns are year, month, day, and daily temperature, respectively):

2012, 01, 01, 5
2012, 01, 02, 45
2012, 01, 03, 35
2012, 01, 04, 10
...
2001, 11, 01, 46
2001, 11, 02, 47
2001, 11, 03, 48
2001, 11, 04, 40
...
2005, 08, 20, 50
2005, 08, 21, 52
2005, 08, 22, 38
2005, 08, 23, 70

Suppose we want to output the temperature for every year-month with the values sorted in ascending order. Essentially, we want the reducer values iterator to be sorted. Therefore, we want to generate something like this output (the first column is year-month and the second column is the sorted temperatures):

2012-01:  5, 10, 35, 45, ...
2001-11: 40, 46, 47, 48, ...
2005-08: 38, 50, 52, 70, ...

Solutions to the Secondary Sort Problem

There are at least two possible approaches for sorting the reducer values. These solutions may be applied to both the MapReduce/Hadoop and Spark frameworks:

  • The first approach involves having the reducer read and buffer all of the values for a given key (in an array data structure, for example), then doing an in-reducer sort on the values. This approach will not scale: since the reducer will be receiving all values for a given key, this approach might cause the reducer to run out of memory (java.lang.OutOfMemoryError). On the other hand, this approach can work well if the number of values is small enough that it will not cause an out-of-memory error.

  • The second approach involves using the MapReduce framework for sorting the reducer values (this does not require in-reducer sorting of values passed to the reducer). This approach consists of “creating a composite key by adding a part of, or the entire value to, the natural key to achieve your sorting objectives.” For the details on this approach, see Java Code Geeks. This option is scalable and will not generate out-of-memory errors. Here, we basically offload the sorting to the MapReduce framework (sorting is a paramount feature of the MapReduce/Hadoop framework).

    This is a summary of the second approach:

    1. Use the Value-to-Key Conversion design pattern: form a composite intermediate key, (K, V1), where V1 is the secondary key. Here, K is called a natural key. To inject a value (i.e., V1) into a reducer key, simply create a composite key (for details, see the DateTemperaturePair class). In our example, V1 is the temperature data.
    2. Let the MapReduce execution framework do the sorting (rather than sorting in memory, let the framework sort by using the cluster nodes).
    3. Preserve state across multiple key-value pairs to handle processing; you can achieve this by having proper mapper output partitioners (for example, we partition the mapper’s output by the natural key).

Implementation Details

To implement the secondary sort feature, we need additional plug-in Java classes. We have to tell the MapReduce/Hadoop framework:

  • How to sort reducer keys

  • How to partition keys passed to reducers (custom partitioner)

  • How to group data that has arrived at each reducer

Sort order of intermediate keys

To accomplish secondary sorting, we need to take control of the sort order of intermediate keys and the control order in which reducers process keys. First, we inject a value (temperature data) into the composite key, and then we take control of the sort order of intermediate keys. The relationships between the natural key, composite key, and key-value pairs are depicted in Figure 1-1.

Secondary Sorting Keys
Figure 1-1. Secondary sorting keys

The main question is what value we should add to the natural key to accomplish the secondary sort. The answer is the temperature data field (because we want the reducers’ values to be sorted by temperature). So, we have to indicate how DateTemperaturePair objects should be sorted using the compareTo() method. We need to define a proper data structure for holding our key and value, while also providing the sort order of intermediate keys. In Hadoop, for custom data types (such as DateTemperaturePair) to be persisted, they have to implement the Writable interface; and if we are going to compare custom data types, then they have to implement an additional interface called WritableComparable (see Example 1-1).

Example 1-1. DateTemperaturePair class
 1 import org.apache.hadoop.io.Writable;
 2 import org.apache.hadoop.io.WritableComparable;
 3 ...
 4 public class DateTemperaturePair
 5    implements Writable, WritableComparable<DateTemperaturePair> {
 6
 7     private Text yearMonth = new Text();                 // natural key
 8     private Text day = new Text();
 9     private IntWritable temperature = new IntWritable(); // secondary key
10
11     ...
12
13     @Override
14     /**
15      * This comparator controls the sort order of the keys.
16      */
17     public int compareTo(DateTemperaturePair pair) {
18         int compareValue = this.yearMonth.compareTo(pair.getYearMonth());
19         if (compareValue == 0) {
20             compareValue = temperature.compareTo(pair.getTemperature());
21         }
22         //return compareValue;    // sort ascending
23         return -1*compareValue;   // sort descending
24     }
25     ...
26 }

Custom partitioner

In a nutshell, the partitioner decides which mapper’s output goes to which reducer based on the mapper’s output key. For this, we need two plug-in classes: a custom partitioner to control which reducer processes which keys, and a custom Comparator to sort reducer values. The custom partitioner ensures that all data with the same key (the natural key, not including the composite key with the temperature value) is sent to the same reducer. The custom Comparator does sorting so that the natural key (year-month) groups the data once it arrives at the reducer.

Example 1-2. DateTemperaturePartitioner class
 1 import org.apache.hadoop.io.Text;
 2 import org.apache.hadoop.mapreduce.Partitioner;
 3
 4 public class DateTemperaturePartitioner
 5    extends Partitioner<DateTemperaturePair, Text> {
 6
 7     @Override
 8     public int getPartition(DateTemperaturePair pair,
 9                             Text text,
10                             int numberOfPartitions) {
11         // make sure that partitions are non-negative
12         return Math.abs(pair.getYearMonth().hashCode() % numberOfPartitions);
13      }
14 }

Hadoop provides a plug-in architecture for injecting the custom partitioner code into the framework. This is how we do so inside the driver class (which submits the MapReduce job to Hadoop):

import org.apache.hadoop.mapreduce.Job;
...
Job job = ...;
...
job.setPartitionerClass(TemperaturePartitioner.class);

Grouping comparator

In Example 1-3, we define the comparator (DateTemperatureGroupingComparator class) that controls which keys are grouped together for a single call to the Reducer.reduce() function.

Example 1-3. DateTemperatureGroupingComparator class
 1 import org.apache.hadoop.io.WritableComparable;
 2 import org.apache.hadoop.io.WritableComparator;
 3
 4 public class DateTemperatureGroupingComparator
 5    extends WritableComparator {
 6
 7     public DateTemperatureGroupingComparator() {
 8         super(DateTemperaturePair.class, true);
 9     }
10
11     @Override
12     /**
13      * This comparator controls which keys are grouped
14      * together into a single call to the reduce() method
15      */
16     public int compare(WritableComparable wc1, WritableComparable wc2) {
17         DateTemperaturePair pair = (DateTemperaturePair) wc1;
18         DateTemperaturePair pair2 = (DateTemperaturePair) wc2;
19         return pair.getYearMonth().compareTo(pair2.getYearMonth());
20     }
21 }

Hadoop provides a plug-in architecture for injecting the grouping comparator code into the framework. This is how we do so inside the driver class (which submits the MapReduce job to Hadoop):

job.setGroupingComparatorClass(YearMonthGroupingComparator.class);

Data Flow Using Plug-in Classes

To help you understand the map() and reduce() functions and custom plug-in classes, Figure 1-2 illustrates the data flow for a portion of input.

Secondary Sorting Data Flow
Figure 1-2. Secondary sorting data flow

The mappers create (K,V) pairs, where K is a composite key of (year,month,temperature) and V is temperature. The (year,month) part of the composite key is the natural key. The partitioner plug-in class enables us to send all natural keys to the same reducer and the grouping comparator plug-in class enables temperatures to arrive sorted at reducers. The Secondary Sort design pattern uses MapReduce’s framework for sorting the reducers’ values rather than collecting them all and then sorting them in memory. The Secondary Sort design pattern enables us to “scale out” no matter how many reducer values we want to sort.

MapReduce/Hadoop Solution to Secondary Sort

This section provides a complete MapReduce implementation of the secondary sort problem using the Hadoop framework.

Input

The input will be a set of files, where each record (line) will have the following format:

Format:
        <year><,><month><,><day><,><temperature>

Example:
        2012, 01, 01, 35
        2011, 12, 23, -4

Expected Output

The expected output will have the following format:

Format:
        <year><-><month>: <temperature1><,><temperature2><,> ...
        where temperature1 <= temperature2 <= ...

Example:
        2012-01:  5, 10, 35, 45, ...
        2001-11: 40, 46, 47, 48, ...
        2005-08: 38, 50, 52, 70, ...

map() Function

The map() function parses and tokenizes the input and then injects the value (temperature) into the reducer key, as shown in Example 1-4.

Example 1-4. map() for secondary sorting
 1 /**
 2  * @param key is generated by Hadoop (ignored here)
 3  * @param value has this format: "YYYY,MM,DD,temperature"
 4  */
 5 map(key, value) {
 6    String[] tokens = value.split(",");
 7    // YYYY = tokens[0]
 8    // MM = tokens[1]
 9    // DD = tokens[2]
10    // temperature = tokens[3]
11    String yearMonth = tokens[0] + tokens[1];
12    String day = tokens[2];
13    int temperature = Integer.parseInt(tokens[3]);
14    // prepare reducer key
15    DateTemperaturePair reducerKey = new DateTemperaturePair();
16    reducerKey.setYearMonth(yearMonth);
17    reducerKey.setDay(day);
18    reducerKey.setTemperature(temperature); // inject value into key
19    // send it to reducer
20    emit(reducerKey, temperature);
21 }

reduce() Function

The reducer’s primary function is to concatenate the values (which are already sorted through the Secondary Sort design pattern) and emit them as output. The reduce() function is given in Example 1-5.

Example 1-5. reduce() for secondary sorting
 1 /**
 2  * @param key is a DateTemperaturePair object
 3  * @param value is a list of temperatures
 4  */
 5 reduce(key, value) {
 6    StringBuilder sortedTemperatureList = new StringBuilder();
 7    for (Integer temperature : value) {
 8       sortedTemperatureList.append(temperature);
 9       sortedTemperatureList.append(",");
10    }
11    emit(key, sortedTemperatureList);
12 }

Hadoop Implementation Classes

The classes shown in Table 1-1 are used to solve the problem.

Table 1-1. Classes used in MapReduce/Hadoop solution
Class name Class description
SecondarySortDriver The driver class; defines input/output and registers plug-in classes
SecondarySortMapper Defines the map() function
SecondarySortReducer Defines the reduce() function
DateTemperatureGroupingComparator Defines how keys will be grouped together
DateTemperaturePair Defines paired date and temperature as a Java object
DateTemperaturePartitioner Defines custom partitioner

How is the value injected into the key? The first comparator (the DateTemperaturePair.compareTo() method) controls the sort order of the keys, while the second comparator (the DateTemperatureGroupingComparator.compare() method) controls which keys are grouped together into a single call to the reduce() method. The combination of these two comparators allows you to set up jobs that act like you’ve defined an order for the values.

The SecondarySortDriver is the driver class, which registers the custom plug-in classes (DateTemperaturePartitioner and DateTemperatureGroupingComparator) with the MapReduce/Hadoop framework. This driver class is presented in Example 1-6.

Example 1-6. SecondarySortDriver class
 1 public class SecondarySortDriver extends Configured implements Tool {
 2     public int run(String[] args) throws Exception {
 3         Configuration conf = getConf();
 4         Job job = new Job(conf);
 5         job.setJarByClass(SecondarySortDriver.class);
 6         job.setJobName("SecondarySortDriver");
 7
 8         Path inputPath = new Path(args[0]);
 9         Path outputPath = new Path(args[1]);
10         FileInputFormat.setInputPaths(job, inputPath);
11         FileOutputFormat.setOutputPath(job, outputPath);
12
13         job.setOutputKeyClass(TemperaturePair.class);
14         job.setOutputValueClass(NullWritable.class);
15
16         job.setMapperClass(SecondarySortingTemperatureMapper.class);
17         job.setReducerClass(SecondarySortingTemperatureReducer.class);
18         job.setPartitionerClass(TemperaturePartitioner.class);
19         job.setGroupingComparatorClass(YearMonthGroupingComparator.class);
20
21         boolean status = job.waitForCompletion(true);
22         theLogger.info("run(): status="+status);
23         return status ? 0 : 1;
24     }
25
26     /**
27     * The main driver for the secondary sort MapReduce program.
28     * Invoke this method to submit the MapReduce job.
29     * @throws Exception when there are communication
30     * problems with the job tracker.
31     */
32     public static void main(String[] args) throws Exception {
33         // Make sure there are exactly 2 parameters
34         if (args.length != 2) {
35             throw new IllegalArgumentException("Usage: SecondarySortDriver" +
36                                                " <input-path> <output-path>");
37         }
38
39         //String inputPath = args[0];
40         //String outputPath = args[1];
41         int returnStatus = ToolRunner.run(new SecondarySortDriver(), args);
42         System.exit(returnStatus);
43     }
44
45 }

Sample Run of Hadoop Implementation

Input

# cat sample_input.txt
2000,12,04, 10
2000,11,01,20
2000,12,02,-20
2000,11,07,30
2000,11,24,-40
2012,12,21,30
2012,12,22,-20
2012,12,23,60
2012,12,24,70
2012,12,25,10
2013,01,22,80
2013,01,23,90
2013,01,24,70
2013,01,20,-10

HDFS input

# hadoop fs -mkdir /secondary_sort
# hadoop fs -mkdir /secondary_sort/input
# hadoop fs -mkdir /secondary_sort/output
# hadoop fs -put sample_input.txt /secondary_sort/input/
# hadoop fs -ls /secondary_sort/input/
Found 1 items
-rw-r--r-- 1 ... 128  ...  /secondary_sort/input/sample_input.txt

The script

# cat run.sh
export JAVA_HOME=/usr/java/jdk7
export BOOK_HOME=/home/mp/data-algorithms-book
export APP_JAR=$BOOK_HOME/dist/data_algorithms_book.jar
INPUT=/secondary_sort/input
OUTPUT=/secondary_sort/output
$HADOOP_HOME/bin/hadoop fs -rmr $OUTPUT
PROG=org.dataalgorithms.chap01.mapreduce.SecondarySortDriver
$HADOOP_HOME/bin/hadoop jar $APP_JAR $PROG $INPUT $OUTPUT

Log of sample run

# ./run.sh
...
Deleted hdfs://localhost:9000/secondary_sort/output
13/02/27 19:39:54 INFO input.FileInputFormat: Total input paths to process : 1
...
13/02/27 19:39:54 INFO mapred.JobClient: Running job: job_201302271939_0001
13/02/27 19:39:55 INFO mapred.JobClient:  map 0% reduce 0%
13/02/27 19:40:10 INFO mapred.JobClient:  map 100% reduce 0%
13/02/27 19:40:22 INFO mapred.JobClient:  map 100% reduce 10%
...
13/02/27 19:41:10 INFO mapred.JobClient:  map 100% reduce 90%
13/02/27 19:41:16 INFO mapred.JobClient:  map 100% reduce 100%
13/02/27 19:41:21 INFO mapred.JobClient: Job complete: job_201302271939_0001
...
13/02/27 19:41:21 INFO mapred.JobClient:   Map-Reduce Framework
...
13/02/27 19:41:21 INFO mapred.JobClient:     Reduce input records=14
13/02/27 19:41:21 INFO mapred.JobClient:     Reduce input groups=4
13/02/27 19:41:21 INFO mapred.JobClient:     Combine output records=0
13/02/27 19:41:21 INFO mapred.JobClient:     Reduce output records=4
13/02/27 19:41:21 INFO mapred.JobClient:     Map output records=14
13/02/27 19:41:21 INFO SecondarySortDriver: run(): status=true
13/02/27 19:41:21 INFO SecondarySortDriver: returnStatus=0

Inspecting the output

# hadoop fs -cat /secondary_sort/output/p*
2013-01  90,80,70,-10
2000-12  10,-20
2000-11  30,20,-40
2012-12  70,60,30,10,-20

How to Sort in Ascending or Descending Order

You can easily control the sorting order of the values (ascending or descending) by using the DateTemperaturePair.compareTo() method as follows:

1 public int compareTo(DateTemperaturePair pair) {
2     int compareValue = this.yearMonth.compareTo(pair.getYearMonth());
3     if (compareValue == 0) {
4        compareValue = temperature.compareTo(pair.getTemperature());
5     }
6     //return compareValue; // sort ascending
7     return -1*compareValue; // sort descending
8 }

Spark Solution to Secondary Sort

To solve a secondary sorting problem in Spark, we have at least two options:

Option #1
Read and buffer all of the values for a given key in an Array or List data structure and then do an in-reducer sort on the values. This solution works if you have a small set of values (which will fit in memory) per reducer key.
Option #2
Use the Spark framework for sorting the reducer values (this option does not require in-reducer sorting of values passed to the reducer). This approach involves “creating a composite key by adding a part of, or the entire value to, the natural key to achieve your sorting objectives.” This option always scales (because you are not limited by the memory of a commodity server).

Time Series as Input

To demonstrate secondary sorting, let’s use time series data:

name time value
  x    2    9
  y    2    5
  x    1    3
  y    1    7
  y    3    1
  x    3    6
  z    1    4
  z    2    8
  z    3    7
  z    4    0
  p    2    6
  p    4    7
  p    1    9
  p    6    0
  p    7    3

Expected Output

Our expected output is as follows. Note that the values of reducers are grouped by name and sorted by time:

name   t1   t2  t3   t4   t5 ...
x =>  [3,   9,  6]
y =>  [7,   5,  1]
z =>  [4,   8,  7,   0]
p =>  [9,   6,  7,   0,   3]

Option 1: Secondary Sorting in Memory

Since Spark has a very powerful and high-level API, I will present the entire solution in a single Java class. The Spark API is built upon the basic abstraction concept of the RDD (resilient distributed data set). To fully utilize Spark’s API, we have to understand RDDs. An RDD<T> (i.e., an RDD of type T) object represents an immutable, partitioned collection of elements (of type T) that can be operated on in parallel. The RDD<T> class contains the basic MapReduce operations available on all RDDs, such as map(), filter(), and persist(), while the JavaPairRDD<K,V> class contains MapReduce operations such as mapToPair(), flatMapToPair(), and groupByKey(). In addition, Spark’s PairRDDFunctions contains operations available only on RDDs of key-value pairs, such as reduce(), groupByKey(), and join(). (For details on RDDs, see Spark’s API and Appendix B of this book.) Therefore, JavaRDD<T> is a list of objects of type T, and JavaPairRDD<K,V> is a list of objects of type Tuple2<K,V> (where each tuple represents a key-value pair).

The Spark-based algorithm is listed next. Although there are 10 steps, most of them are trivial and some are provided for debugging purposes only:

  1. We import the required Java/Spark classes. The main Java classes for MapReduce are given in the org.apache.spark.api.java package. This package includes the following classes and interfaces:

    • JavaRDDLike (interface)

    • JavaDoubleRDD

    • JavaPairRDD

    • JavaRDD

    • JavaSparkContext

    • StorageLevels

  2. We pass input data as arguments and validate.
  3. We connect to the Spark master by creating a JavaSparkContext object, which is used to create new RDDs.
  4. Using the context object (created in step 3), we create an RDD for the input file; the resulting RDD will be a JavaRDD<String>. Each element of this RDD will be a record of time series data: <name><,><time><,><value>.
  5. Next we want to create key-value pairs from a JavaRDD<String>, where the key is the name and the value is a pair of (time, value). The resulting RDD will be a JavaPairRDD<String, Tuple2<Integer, Integer>>.
  6. To validate step 5, we collect all values from the JavaPairRDD<> and print them.
  7. We group JavaPairRDD<> elements by the key (name). To accomplish this, we use the groupByKey() method.

    The result will be the RDD:

    JavaPairRDD<String, Iterable<Tuple2<Integer, Integer>>>

    Note that the resulting list (Iterable<Tuple2<Integer, Integer>>) is unsorted. In general, Spark’s reduceByKey() is preferred over groupByKey() for performance reasons, but here we have no other option than groupByKey() (since reduceByKey() does not allow us to sort the values in place for a given key).

  8. To validate step 7, we collect all values from the JavaPairRDD<String, Iterable<Tuple2<Integer, Integer>>> and print them.
  9. We sort the reducer’s values to get the final output. We accomplish this by writing a custom mapValues() method. We just sort the values (the key remains the same).
  10. To validate the final result, we collect all values from the sorted JavaPairRDD<> and print them.

A solution for option #1 is implemented by a single driver class: SecondarySorting (see Example 1-7). All steps, 1–10, are listed inside the class definition, which will be presented in the following sections. Typically, a Spark application consists of a driver program that runs the user’s main() function and executes various parallel operations on a cluster. Parallel operations will be achieved through the extensive use of RDDs. For further details on RDDs, see Appendix B.

Example 1-7. SecondarySort class overall structure
 1 // Step 1: import required Java/Spark classes
 2 public class SecondarySort {
 3   public static void main(String[] args) throws Exception {
 4     // Step 2: read input parameters and validate them
 5     // Step 3: connect to the Spark master by creating a JavaSparkContext
 6     // object (ctx)
 6     // Step 4: use ctx to create JavaRDD<String>
 7     // Step 5: create key-value pairs from JavaRDD<String>, where
 8     // key is the {name} and value is a pair of (time, value)
 9     // Step 6: validate step 5-collect all values from JavaPairRDD<>
10     // and print them
11     // Step 7: group JavaPairRDD<> elements by the key ({name})
12     // Step 8: validate step 7-collect all values from JavaPairRDD<>
13     // and print them
14     // Step 9: sort the reducer's values; this will give us the final output
15     // Step 10: validate step 9-collect all values from JavaPairRDD<>
16     // and print them
17
18     // done
19     ctx.close();
20     System.exit(0);
21   }
22 }

Step 1: Import required classes

As shown in Example 1-8, the main Spark package for the Java API is org.apache.spark.api.java, which includes the JavaRDD, JavaPairRDD, and JavaSparkContext classes. JavaSparkContext is a factory class for creating new RDDs (such as JavaRDD and JavaPairRDD objects).

Example 1-8. Step 1: Import required classes
 1 // Step 1: import required Java/Spark classes
 2 import scala.Tuple2;
 3 import org.apache.spark.api.java.JavaRDD;
 4 import org.apache.spark.api.java.JavaPairRDD;
 5 import org.apache.spark.api.java.JavaSparkContext;
 6 import org.apache.spark.api.java.function.Function;
 7 import org.apache.spark.api.java.function.Function2;
 8 import org.apache.spark.api.java.function.PairFunction;
 9
10 import java.util.List;
11 import java.util.ArrayList;
12 import java.util.Map;
13 import java.util.Collections;
14 import java.util.Comparator;

Step 2: Read input parameters

This step, demonstrated in Example 1-9, reads the HDFS input file (Spark may read data from HDFS and other persistent stores, such as a Linux filesystem), which might look like /dir1/dir2/myfile.txt.

Example 1-9. Step 2: Read input parameters
1    // Step 2: read input parameters and validate them
2    if (args.length < 1) {
3       System.err.println("Usage: SecondarySort <file>");
4       System.exit(1);
5    }
6    String inputPath = args[0];
7    System.out.println("args[0]: <file>="+args[0]);

Step 3: Connect to the Spark master

To work with RDDs, first you need to create a JavaSparkContext object (as shown in Example 1-10), which is a factory for creating JavaRDD and JavaPairRDD objects. It is also possible to create a JavaSparkContext object by injecting a SparkConf object into the JavaSparkContext’s class constructor. This approach is useful when you read your cluster configurations from an XML file. In a nutshell, the JavaSparkContext object has the following responsibilities:

  • Initializes the application driver.

  • Registers the application driver to the cluster manager. (If you are using the Spark cluster, then this will be the Spark master; if you are using YARN, then it will be YARN’s resource manager.)

  • Obtains a list of executors for executing your application driver.

Example 1-10. Step 3: Connect to the Spark master
1    // Step 3: connect to the Spark master by creating a JavaSparkContext object
2    final JavaSparkContext ctx = new JavaSparkContext();

Step 4: Use the JavaSparkContext to create a JavaRDD

This step, illustrated in Example 1-11, reads an HDFS file and creates a JavaRDD<String> (which represents a set of records where each record is a String object). By definition, Spark’s RDDs are immutable (i.e., they cannot be altered or modified). Note that Spark’s RDDs are the basic abstraction for parallel execution. Note also that you may use textFile() to read HDFS or non-HDFS files.

Example 1-11. Step 4: Create JavaRDD
1    // Step 4: use ctx to create JavaRDD<String>
2    // input record format: <name><,><time><,><value>
3    JavaRDD<String> lines = ctx.textFile(inputPath, 1);

Step 5: Create key-value pairs from the JavaRDD

This step, shown in Example 1-12, implements a mapper. Each record (from the JavaRDD<String> and consisting of <name><,><time><,><value>) is converted to a key-value pair, where the key is a name and the value is a Tuple2(time, value).

Example 1-12. Step 5: Create key-value pairs from JavaRDD
 1    // Step 5: create key-value pairs from JavaRDD<String>, where
 2    // key is the {name} and value is a pair of (time, value).
 3    // The resulting RDD will be a JavaPairRDD<String, Tuple2<Integer, Integer>>.
 4    // Convert each record into Tuple2(name, time, value).
 5    // PairFunction<T, K, V>
 6    //     T => Tuple2(K, V) where T is input (as String),
 7    //     K=String
 8    //     V=Tuple2<Integer, Integer>
 9    JavaPairRDD<String, Tuple2<Integer, Integer>> pairs =
10          lines.mapToPair(new PairFunction<
11                                           String,                  // T
12                                           String,                  // K
13                                           Tuple2<Integer, Integer> // V
14                                          >() {
15      public Tuple2<String, Tuple2<Integer, Integer>> call(String s) {
16        String[] tokens = s.split(","); // x,2,5
17        System.out.println(tokens[0] + "," + tokens[1] + "," + tokens[2]);
18        Integer time = new Integer(tokens[1]);
19        Integer value = new Integer(tokens[2]);
20        Tuple2<Integer, Integer> timevalue = 
          new Tuple2<Integer, Integer>(time, value);
21        return new Tuple2<String, Tuple2<Integer, Integer>>(tokens[0], timevalue);
22      }
23    });

Step 6: Validate step 5

To debug and validate your steps in Spark (as shown in Example 1-13), you may use JavaRDD.collect() and JavaPairRDD.collect(). Note that collect() is used for debugging and educational purposes (but avoid using collect() for debugging purposes in production clusters; doing so will impact performance). Also, you may use JavaRDD.saveAsTextFile() for debugging as well as creating your desired outputs.

Example 1-13. Step 6: Validate step 5
1    // Step 6: validate step 5-collect all values from JavaPairRDD<>
2    // and print them
3    List<Tuple2<String, Tuple2<Integer, Integer>>> output = pairs.collect();
4    for (Tuple2 t : output) {
5       Tuple2<Integer, Integer> timevalue = (Tuple2<Integer, Integer>) t._2;
6       System.out.println(t._1 + "," + timevalue._1 + "," + timevalue._1);
7    }

Step 7: Group JavaPairRDD elements by the key (name)

We implement the reducer operation using groupByKey(). As you can see in Example 1-14, it is much easier to implement the reducer through Spark than MapReduce/Hadoop. Note that in Spark, in general, reduceByKey() is more efficient than groupByKey(). Here, however, we cannot use reduceByKey().

Example 1-14. Step 7: Group JavaPairRDD elements
1    // Step 7: group JavaPairRDD<> elements by the key ({name})
2    JavaPairRDD<String, Iterable<Tuple2<Integer, Integer>>> groups =
3          pairs.groupByKey();

Step 8: Validate step 7

This step, shown in Example 1-15, validates the previous step by using the collect() function, which gets all values from the groups RDD.

Example 1-15. Step 8: Validate step 7
 1    // Step 8: validate step 7-we collect all values from JavaPairRDD<>
 2    // and print them
 2    System.out.println("===DEBUG1===");
 3    List<Tuple2<String, Iterable<Tuple2<Integer, Integer>>>> output2 =
 4          groups.collect();
 5    for (Tuple2<String, Iterable<Tuple2<Integer, Integer>>> t : output2) {
 6       Iterable<Tuple2<Integer, Integer>> list = t._2;
 7       System.out.println(t._1);
 8       for (Tuple2<Integer, Integer> t2 : list) {
 9          System.out.println(t2._1 + "," + t2._2);
10       }
11       System.out.println("=====");
12    }

The following shows the output of this step. As you can see, the reducer values are not sorted:

y
2,5
1,7
3,1
=====
x
2,9
1,3
3,6
=====
z
1,4
2,8
3,7
4,0
=====
p
2,6
4,7
6,0
7,3
1,9
=====

Step 9: Sort the reducer’s values in memory

This step, shown in Example 1-16, uses another powerful Spark method, mapValues(), to just sort the values generated by reducers. The mapValues() method enables us to convert (K, V1) into (K, V2), where V2 is a sorted V1. One important note about Spark’s RDD is that it is immutable and cannot be altered/updated by any means. For example, in this step, to sort our values, we have to copy them into another list first. Immutability applies to the RDD itself and its elements.

Example 1-16. Step 9: sort the reducer’s values in memory
 1    // Step 9: sort the reducer's values; this will give us the final output.
 2    // Option #1: worked
 3    // mapValues[U](f: (V) => U): JavaPairRDD[K, U]
 4    // Pass each value in the key-value pair RDD through a map function
 5    // without changing the keys;
 6    // this also retains the original RDD's partitioning.
 7    JavaPairRDD<String, Iterable<Tuple2<Integer, Integer>>> sorted =
 8          groups.mapValues(
 9            new Function<Iterable<Tuple2<Integer, Integer>>,  // input
10                         Iterable<Tuple2<Integer, Integer>>   // output
11                        >() {
12      public Iterable<Tuple2<Integer, Integer>> call(Iterable<Tuple2<Integer,
13                                                                  Integer>> s) {
14        List<Tuple2<Integer, Integer>> newList = new ArrayList<Tuple2<Integer,
15                                                                   Integer>>(s);
16        Collections.sort(newList, new TupleComparator());
17        return newList;
18      }
19    });

Step 10: output final result

The collect() method collects all of the RDD’s elements into a java.util.List object. Then we iterate through the List to get all the final elements (see Example 1-17).

Example 1-17. Step 10: Output final result
 1    // Step 10: validate step 9-collect all values from JavaPairRDD<>
 2    // and print them
 3    System.out.println("===DEBUG2=");
 4    List<Tuple2<String, Iterable<Tuple2<Integer, Integer>>>> output3 =
 5          sorted.collect();
 6    for (Tuple2<String, Iterable<Tuple2<Integer, Integer>>> t : output3) {
 7       Iterable<Tuple2<Integer, Integer>> list = t._2;
 8       System.out.println(t._1);
 9       for (Tuple2<Integer, Integer> t2 : list) {
10          System.out.println(t2._1 + "," + t2._2);
11       }
12       System.out.println("=====");
13    }

Spark Sample Run

As far as Spark/Hadoop is concerned, you can run a Spark application in three different modes:1

Standalone mode
This is the default setup. You start the Spark master on a master node and a “worker” on every slave node, and submit your Spark application to the Spark master.
YARN client mode
In this mode, you do not start a Spark master or worker nodes. Instead, you submit the Spark application to YARN, which runs the Spark driver in the client Spark process that submits the application.
YARN cluster mode
In this mode, you do not start a Spark master or worker nodes. Instead, you submit the Spark application to YARN, which runs the Spark driver in the ApplicationMaster in YARN.

Next, we will cover how to submit the secondary sort application in the standalone and YARN cluster modes.

Running Spark in standalone mode

The following subsections provide the input, script, and log output of a sample run of our secondary sort application in Spark’s standalone mode.

HDFS input

# hadoop fs -cat /mp/timeseries.txt
x,2,9
y,2,5
x,1,3
y,1,7
y,3,1
x,3,6
z,1,4
z,2,8
z,3,7
z,4,0
p,2,6
p,4,7
p,1,9
p,6,0
p,7,3

The script

# cat run_secondarysorting.sh
#!/bin/bash
export JAVA_HOME=/usr/java/jdk7
export SPARK_HOME=/home/hadoop/spark-1.1.0
export SPARK_MASTER=spark://myserver100:7077
BOOK_HOME=/home/mp/data-algorithms-book
APP_JAR=$BOOK_HOME/dist/data_algorithms_book.jar
INPUT=/home/hadoop/testspark/timeseries.txt
# Run on a Spark standalone cluster
prog=org.dataalgorithms.chap01.spark.SparkSecondarySort
$SPARK_HOME/bin/spark-submit \
  --class $prog \
  --master $SPARK_MASTER \
  --executor-memory 2G \
  --total-executor-cores 20 \
  $APP_JAR \
  $INPUT

Log of the run

# ./run_secondarysorting.sh
args[0]: <file>=/mp/timeseries.txt
...
===  DEBUG STEP 5 ===
...
x,2,2
y,2,2
x,1,1
y,1,1
y,3,3
x,3,3
z,1,1
z,2,2
z,3,3
z,4,4
p,2,2
p,4,4
p,1,1
p,6,6
p,7,7
===  DEBUG STEP 7 ===
14/06/04 08:42:54 INFO spark.SparkContext: Starting job: collect
  at SecondarySort.java:96
14/06/04 08:42:54 INFO scheduler.DAGScheduler: Registering RDD 2
  (mapToPair at SecondarySort.java:75)
...
14/06/04 08:42:55 INFO scheduler.DAGScheduler: Stage 1
  (collect at SecondarySort.java:96) finished in 0.273 s
14/06/04 08:42:55 INFO spark.SparkContext: Job finished:
  collect at SecondarySort.java:96, took 1.587001929 s
z
1,4
2,8
3,7
4,0
=====
p
2,6
4,7
1,9
6,0
7,3
=====
x
2,9
1,3
3,6
=====
y
2,5
1,7
3,1
=====
===  DEBUG STEP 9 ===
14/06/04 08:42:55 INFO spark.SparkContext: Starting job: collect
  at SecondarySort.java:158
...
14/06/04 08:42:55 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0,
  whose tasks have all completed, from pool
14/06/04 08:42:55 INFO spark.SparkContext: Job finished: collect at
  SecondarySort.java:158, took 0.074271723 s
z
1,4
2,8
3,7
4,0
=====
p
1,9
2,6
4,7
6,0
7,3
=====
x
1,3
2,9
3,6
=====
y
1,7
2,5
3,1
=====

Typically, you save the final result to HDFS. You can accomplish this by adding the following line of code after creating your “sorted” RDD:

sorted.saveAsTextFile("/mp/output");

Then you may view the output as follows:

# hadoop fs -ls /mp/output/
Found 2 items
-rw-r--r--   3 hadoop root,hadoop      0 2014-06-04 10:49 /mp/output/_SUCCESS
-rw-r--r--   3 hadoop root,hadoop    125 2014-06-04 10:49 /mp/output/part-00000

# hadoop fs -cat /mp/output/part-00000
(z,[(1,4), (2,8), (3,7), (4,0)])
(p,[(1,9), (2,6), (4,7), (6,0), (7,3)])
(x,[(1,3), (2,9), (3,6)])
(y,[(1,7), (2,5), (3,1)])

Running Spark in YARN cluster mode

The script to submit our Spark application in YARN cluster mode is as follows:

# cat run_secondarysorting_yarn.sh
#!/bin/bash
export JAVA_HOME=/usr/java/jdk7
export HADOOP_HOME=/usr/local/hadoop-2.5.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
export SPARK_HOME=/home/hadoop/spark-1.1.0
BOOK_HOME=/home/mp/data-algorithms-book
APP_JAR=$BOOK_HOME/dist/data_algorithms_book.jar
INPUT=/mp/timeseries.txt
prog=org.dataalgorithms.chap01.spark.SparkSecondarySort
$SPARK_HOME/bin/spark-submit \
  --class $prog \
  --master yarn-cluster \
  --executor-memory 2G \
  --num-executors 10 \
  $APP_JAR \
  $INPUT

Option #2: Secondary Sorting Using the Spark Framework

In the solution for option #1, we sorted reducer values in memory (using Java’s Collections.sort() method), which might not scale if the reducer values will not fit in a commodity server’s memory. Next we will implement option #2 for the MapReduce/Hadoop framework. We cannot achieve this in the current Spark (Spark-1.1.0) framework, because currently Spark’s shuffle is based on a hash, which is different from MapReduce’s sort-based shuffle. So, you should implement sorting explicitly using an RDD operator. If we had a partitioner by a natural key (name) that preserved the order of the RDD, that would be a viable solution—for example, if we sorted by (name, time), we would get:

(p,1),(1,9)
(p,4),(4,7)
(p,6),(6,0)
(p,7),(7,3)

(x,1),(1,3)
(x,2),(2,9)
(x,3),(3,6)

(y,1),(1,7)
(y,2),(2,5)
(y,3),(3,1)

(z,1),(1,4)
(z,2),(2,8)
(z,3),(3,7)
(z,4),(4,0)

There is a partitioner (represented as an abstract class, org.apache.spark.Partitioner), but it does not preserve the order of the original RDD elements. Therefore, option #2 cannot be implemented by the current version of Spark (1.1.0).

Further Reading on Secondary Sorting

To support secondary sorting in Spark, you may extend the JavaPairRDD class and add additional methods such as groupByKeyAndSortValues(). For further work on this topic, you may refer to the following:

Chapter 2 provides a detailed implementation of the Secondary Sort design pattern using the MapReduce and Spark frameworks.

1 For details, see the Spark documentation.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required