You are previewing CP Violation.
O'Reilly logo
CP Violation

Book Description

Why didn't the matter in our Universe annihilate with antimatter immediately after its creation? The study of CP violation may help to answer this fundamental question. This book presents theoretical tools necessary to understand this phenomenon. Reflecting the explosion of new results over the last decade, this second edition has been substantially expanded. It introduces charge conjugation, parity and time reversal, before describing the Kobayashi-Maskawa (KM) theory for CP violation and our understanding of CP violation in kaon decays. It reveals how the discovery of B mesons has provided a new laboratory to study CP violation with KM theory predicting large asymmetries, and discusses how these predictions have been confirmed since the first edition of this book. Later chapters describe the search for a new theory of nature's fundamental dynamics. This book is suitable for researchers in high energy, atomic and nuclear physics and the history and philosophy of science.

Table of Contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Dedication
  5. Contents
  6. Preface to the second edition
  7. Preface to the first edition
  8. Part I: Basics of CP violation
    1. 1. Prologue
    2. 2. Prelude: C, P and T in classical dynamics
      1. 2.1 Classical mechanics
        1. 2.1.1 Parity
        2. 2.1.2 Time reversal
      2. 2.2 Electrodynamics
        1. 2.2.1 Charge conjugation
        2. 2.2.2 Parity
        3. 2.2.3 Time reversal
      3. 2.3 Résumé
      4. Problems
    3. 3. C, P and T in non-relativistic quantum mechanics
      1. 3.1 Parity
      2. 3.2 Charge conjugation
      3. 3.3 Time reversal
      4. 3.4 Kramers’ degeneracy
      5. 3.5 Detailed balance
      6. 3.6 Electric dipole moments
        1. 3.6.1 The neutron EDM
        2. 3.6.2 Water molecules and atoms
        3. 3.6.3 Dumb-bells
        4. 3.6.4 Schiff’s theorem
      7. 3.7 Résumé
      8. Problems
    4. 4. C, P and T in relativistic quantum theories
      1. 4.1 Notation
      2. 4.2 Spin-1 fields
      3. 4.3 Spin-0 fields
        1. 4.3.1 Parity
        2. 4.3.2 Charge conjugation
        3. 4.3.3 Time reversal
      4. 4.4 Spin-1/2 fields
        1. 4.4.1 Parity
        2. 4.4.2 Charge conjugation
        3. 4.4.3 Time reversal
      5. 4.5 CP and CPT transformations
      6. 4.6 Some consequences of the CPT theorem
      7. 4.7 ♠ Back to first quantization ♠
      8. 4.8 ♠ Phase conventions for C and P ♠
      9. 4.9 ♠ Internal symmetries ♠
      10. 4.10 The role of final state interactions
        1. 4.10.1 T invariance and Watson’s theorem
        2. 4.10.2 Final state interactions and partial widths
        3. 4.10.3 ♠ T symmetry and final state interactions ♠
      11. 4.11 Résumé and outlook
      12. Problems
    5. 5. The arrival of strange particles
      1. 5.1 The discovery of strange particles
      2. 5.2 The θ − τ puzzle
      3. 5.3 The ΔI = 1/2 rule
      4. 5.4 The existence of two different neutral kaons
      5. 5.5 CP invariant K0–K0 oscillations
      6. 5.6 Regeneration – which is heavier: KL or KS?
      7. 5.7 The quiet before the storm
      8. 5.8 The discovery of CP violation
      9. Problems
    6. 6. Quantum mechanics of neutral particles
      1. 6.1 The effective Hamiltonian
      2. 6.2 Constraints from CPT, CP and T
      3. 6.3 Spherical coordinates
      4. 6.4 ♠ On phase conventions ♠
      5. 6.5 ♠ ΔM and ΔΓ ♠
      6. 6.6 Master equations of time evolution
      7. 6.7 CP violation: classes (A), (B) and (C)
      8. 6.8 ♠ On the sign of the CP asymmetry ♠
      9. 6.9 What happens if you don’t observe the decay time?
      10. 6.10 Regeneration
      11. 6.11 The Bell–Steinberger inequality
      12. 6.12 Résumé on P0–P0 oscillations
      13. Problems
  9. Part II: Theory and experiments
    1. 7. The quest for CP violation in K decays – a marathon
      1. 7.1 The landscape
      2. 7.2 KL → ππ decays
        1. 7.2.1 Decay amplitudes
        2. 7.2.2 Constraints on AI and AI
        3. 7.2.3 Relating ε to M – i/2Γ
        4. 7.2.4 The phase of ε
      3. 7.3 Semileptonic decays
      4. 7.4 ♠ P⊥ in K → πμν decays ♠
      5. 7.5 ♠ K → 3π ♠
        1. 7.5.1 Ks → 3π0
        2. 7.5.2 Ks → π+π−π0
        3. 7.5.3 K± → π±π+π−
      6. 7.6 ♠ Hyperon decays ♠
      7. 7.7 The bard’s song
      8. Problems
    2. 8. The KM implementation of CP violation
      1. 8.1 A bit of history
      2. 8.2 The Standard Model
        1. 8.2.1 QCD
        2. 8.2.2 The Glashow–Salam–Weinberg model
      3. 8.3 The KM ansatz
        1. 8.3.1 The mass matrices
        2. 8.3.2 Parameters of consequence
        3. 8.3.3 Describing weak phases through unitarity triangles
      4. 8.4 A tool kit
        1. 8.4.1 The angles of the unitarity triangle
      5. 8.5 The pundits’ judgement
      6. Problems
    3. 9. The theory of KL → ππ decays
      1. 9.1 The ΔS = 1 non-leptonic Lagrangian
      2. 9.2 Evaluating matrix elements
      3. 9.3 Chiral symmetry and vacuum saturation approximation
      4. 9.4 K → ππ decays
      5. 9.5 ♠ Computation of ε′/ε ♠
        1. 9.5.1 Determining matrix elements from data
        2. 9.5.2 Numerical estimates
      6. 9.6 ΔS = 2 amplitudes
        1. 9.6.1 ΔMK
        2. 9.6.2 ε
      7. 9.7 ♠ SM expectations for <P⊥> in Kl3 decays ♠
      8. 9.8 Résumé
      9. Problems
    4. 10. Paradigmatic discoveries in B physics
      1. 10.1 The emerging beauty of B hadrons
        1. 10.1.1 The discovery of beauty
        2. 10.1.2 The longevity of B mesons
        3. 10.1.3 The fluctuating identity of neutral B mesons
        4. 10.1.4 Another triumph for CKM dynamics
      2. 10.2 What does the SM say about oscillations?
        1. 10.2.1 Computation of ΔM
      3. 10.3 ♠ On the sign of ΔMB ♠
      4. 10.4 CP violation in B decays – like in K decays, only different
      5. 10.5 From sweatshops to beauty factories
        1. 10.5.1 Disappointment at a symmetric machine
        2. 10.5.2 A crazy idea
      6. 10.6 First reward – Bd → ψKs
      7. 10.7 The second reward – Bd → π+π−
      8. 10.8 More rewards – B0 → Kπ, η′Ks
        1. 10.8.1 B → Kπ
        2. 10.8.2 Bd → η′Ks
      9. 10.9 CPT invariance vs. T and CP violation
      10. 10.10 Reflections
        1. 10.10.1 On the virtue of ‘over-designing’
        2. 10.10.2 The ‘unreasonable’ success of CKM theory
        3. 10.10.3 Praising hadronization
        4. 10.10.4 EPR correlations – a blessing in disguise
      11. 10.11 Résumé
      12. Problems
    5. 11. Let the drama unfold – B CP phenomenology
      1. 11.1 Pollution from water fowls and others
      2. 11.2 Determining ф1
        1. 11.2.1 How clean is Bd → ψKs?
        2. 11.2.2 ♠ Other ways to get at ф1 ♠
      3. 11.3 Determining ф2
        1. 11.3.1 Penguins in Bd → ππ
        2. 11.3.2 Overcoming pollution
        3. 11.3.3 B → ππ
        4. 11.3.4 B → πρ, ρρ
      4. 11.4 Determining ф3
        1. 11.4.1 Using doubly Cabibbo-suppressed decays
        2. 11.4.2 Dalitz plot analysis
      5. 11.5 Search for New Physics
        1. 11.5.1 Wrong-sign semileptonic decays: Class(B)
        2. 11.5.2 ♠ Theoretical estimate of ASL ♠
        3. 11.5.3 What can oscillations tell us about New Physics?
        4. 11.5.4 Bs → ψф, ψη(′), Ds+Ds−: Class (C2)
        5. 11.5.5 Bs → Ksρ0: Class (C1, C2)
        6. 11.5.6 Bd → фKs, ηKs: Class(C2)
        7. 11.5.7 Bs → Ds±K±: Class (C1,C2)
      6. 11.6 Resumé
      7. Problems
    6. 12. Rare K and B decays – almost perfect laboratories
      1. 12.1 Rare K decays
        1. 12.1.1 KL → μ+μ− and K+ → π+e+e−
        2. 12.1.2 KL → π0l+l−
        3. 12.1.3 K → πνν
        4. 12.1.4 ♠ K → ππγ(*) ♠
      2. 12.2 Beauty decays
        1. 12.2.1 B → Xsγ
        2. 12.2.2 B → μ+μ−
        3. 12.2.3 B → X + νν
        4. 12.2.4 B → Xs + μ+μ−
      3. 12.3 Résumé
      4. Problems
    7. 13. ♠ CPT violation – could it be in K and B decays? ♠
      1. 13.1 Equality of masses and lifetimes
      2. 13.2 Theoretical scenarios
      3. 13.3 CPT phenomenology for neutral kaons
        1. 13.3.1 Semileptonic decays
        2. 13.3.2 Asymmetries
        3. 13.3.3 Non-leptonic neutral K decays
      4. 13.4 Harnessing EPR correlations
        1. 13.4.1 ф factory
        2. 13.4.2 Tests of CPT symmetry in B decays
      5. 13.5 The moralist’s view
      6. Problems
    8. 14. CP violation in charm decays – the dark horse
      1. 14.1 On the uniqueness of charm
      2. 14.2 D0 – D0 oscillations
        1. 14.2.1 Experimental evidence
        2. 14.2.2 First résumé
        3. 14.2.3 Theoretical expectations on ΔMD & ΔΓD
        4. 14.2.4 New Physics contributions to ΔMD and ΔΓD?
        5. 14.2.5 ♠ Numerical predictions for ΔMD and ΔΓD ♠
      3. 14.3 CP violation
        1. 14.3.1 Preliminaries
        2. 14.3.2 CP asymmetries with out D0 – D0 oscillations
        3. 14.3.3 Oscillations – the new portal to CP violation
        4. 14.3.4 Harnessing EPR correlations
      4. 14.4 Résumé and a call to action
      5. Problems
    9. 15. The strong CP problem
      1. 15.1 The problem
      2. 15.2 Why G · G matters and F · F does not
      3. 15.3 ♠ The U(1)A problem ♠
      4. 15.4 QCD and quark masses
      5. 15.5 The neutron electric dipole moment
      6. 15.6 Are there escape hatches?
        1. 15.6.1 Soft CP violation
      7. 15.7 Peccei–Quinn symmetry
      8. 15.8 The dawn of axions – and their dusk?
        1. 15.8.1 Visible axions
        2. 15.8.2 Invisible axions
      9. 15.9 The pundits’ judgement
      10. Problems
  10. Part III: Looking beyond the Standard Model
    1. 16. Quest for CP violation in the neutrino sector
      1. 16.1 Experiments
        1. 16.1.1 Solar neutrinos
        2. 16.1.2 Atmospheric neutrinos
        3. 16.1.3 Man-made neutrinos
        4. 16.1.4 Qualitative summary
      2. 16.2 Basics of neutrino oscillations
        1. 16.2.1 Mass hierarchy
        2. 16.2.2 Estimating θ13 and θ12
        3. 16.2.3 Atmospheric neutrinos
      3. 16.3 Neutrino mixing parameters
      4. 16.4 The MSW effect
      5. 16.5 Neutrino masses
      6. 16.6 Neutrino mixing with Majorana neutrinos
      7. 16.7 Phases in the PMNS matrix
      8. 16.8 CP and T violation in ν oscillations
      9. 16.9 How to measure the Majorana phase?
      10. 16.10 The bard’s song
      11. Problems
    2. 17. Possible corrections to the KM ansatz: right-handed currents and non-minimal Higgs dynamics
      1. 17.1 Left–right symmetric models
        1. 17.1.1 Basics
        2. 17.1.2 The existing phenomenology in strange decays
        3. 17.1.3 Electric dipole moments
        4. 17.1.4 Prospects for CP asymmetries in beauty decays
      2. 17.2 CP violation from Higgs dynamics
        1. 17.2.1 A simple example
        2. 17.2.2 Sources of CP violation
        3. 17.2.3 CP phenomenology with heavy fermions
      3. 17.3 The pundits’ résumé
      4. Problems
    3. 18. CP violation without non-perturbative dynamics – top quarks and charged leptons
      1. 18.1 Production and decay of top quarks
        1. 18.1.1 σ(tLtL) vs σ(tRtR)
        2. 18.1.2 Final state distributions in e+e− → ttH0
      2. 18.2 On CP violation with leptons
        1. 18.2.1 Positronium
        2. 18.2.2 μ decays
        3. 18.2.3 τ decays
        4. 18.2.4 τ production
      3. 18.3 Résumé on top and τ transitions
      4. Problems
    4. 19. SUSY-providing shelter for Higgs dynamics
      1. 19.1 The virtues of SUSY
      2. 19.2 Low-energy SUSY
        1. 19.2.1 The MSSM
      3. 19.3 Gateways for CP violation
        1. 19.3.1 A first glance at CP phases in MSSM
        2. 19.3.2 Squark mass matrices
        3. 19.3.3 Beyond MSSM
      4. 19.4 Confronting experiments
        1. 19.4.1 Electric dipole moments
        2. 19.4.2 SUSY contributions to ΔS ≠ 0 ≠ ΔB transitions
        3. 19.4.3 Bounds on MI SUSY parameters
        4. 19.4.4 Can SUSY be generic?
      5. 19.5 The pundits’ résumé
      6. Problems
    5. 20. Minimal flavour violation and extra dimensions
      1. 20.1 On minimal flavour violation
        1. 20.1.1 Defining, implementing and probing MFV
      2. 20.2 Extra (space) dimensions
      3. 20.3 The pundits’ call
    6. 21. Baryogenesis in the universe
      1. 21.1 The challenge
      2. 21.2 The ingredients
      3. 21.3 GUT baryogenesis
      4. 21.4 Electroweak baryogenesis
      5. 21.5 Leptogenesis driving baryogenesis
      6. 21.6 Wisdom – conventional and otherwise
  11. Part IV: Summary
    1. 22. Summary and perspectives
      1. 22.1 The cathedral builder’s paradigm
        1. 22.1.1 Present status and general expectations
        2. 22.1.2 A look back
      2. 22.2 Agenda for the future
      3. 22.3 Final words
  12. References
  13. Index