You are previewing Compact Antennas for Wireless Communications and Terminals: Theory and Design.
O'Reilly logo
Compact Antennas for Wireless Communications and Terminals: Theory and Design

Book Description

Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.

The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, reconfigurable antennas and diversity issues.

Table of Contents

  1. Cover
  2. Dedication
  3. Title Page
  4. Copyright
  5. Introduction
  6. Chapter 1. General Information About Printed Antennas
    1. 1.1. Physical characteristics
    2. 1.2. Properties, limitations, and applications
    3. 1.3. Printed rectangular antenna viewed as a wide microstrip line
    4. 1.4. Manufacturing processes
    5. 1.5. Microwave substrates
  7. Chapter 2. Transmission Line Model
    1. 2.1. Introduction
    2. 2.2. Equivalent circuit
      1. 2.2.1. Effective permittivity
      2. 2.2.2. Equivalent line extension
      3. 2.2.3. End of line equivalent circuit
      4. 2.2.4. Process for design of a rectangular antenna
      5. 2.2.5. Example
    3. 2.3. Input impedance
  8. Chapter 3. Cavity Model
    1. 3.1. Introduction
    2. 3.2. Formulation of the electromagnetic problem
    3. 3.3. Calculation of expressions for fields and currents of a rectangular patch
    4. 3.4. Expressions for principal modes
    5. 3.5. Cartography of modal currents and associated radiation patterns
  9. Chapter 4. Radiation of a Printed Antenna
    1. 4.1. Introduction
    2. 4.2. Modelization using two equivalent radiating slots
    3. 4.3. Calculation of the field radiated by a horizontal radiating slot
    4. 4.4. Calculation of the field radiated by the rectangular patch
    5. 4.5. Determination of the radiation pattern in the principal planes
    6. 4.6. Influence of height
    7. 4.7. Influence of the ground plane
    8. 4.8. Polarization
    9. 4.9. Directivity
    10. 4.10. Influence of the substrate on resonant frequency: parametric study based on antenna RCS
  10. Chapter 5. Electrical Equivalent Circuit of a Printed Antenna
    1. 5.1. Energy considerations
    2. 5.2. Equivalent circuit
    3. 5.3. Determination of WE, WM, and B for a rectangular patch
    4. 5.4. Modeling using a tank circuit
    5. 5.5. Quality factor of an antenna
    6. 5.6. Calculation of radiation quality factor
    7. 5.7. Calculation of efficiency
      1. 5.7.1. Losses in conductive walls
      2. 5.7.2. Losses in the dielectric
      3. 5.7.3. Radiated power
    8. 5.8. Influence of surface waves on bandwidth and efficiency
  11. Chapter 6. Feeding Circuits for Microstrip Antennas
    1. 6.1. Introduction
    2. 6.2. Direct coupling by coaxial probe
    3. 6.3. Excitation by proximity coupling
    4. 6.4. Excitation by slot coupling
  12. Chapter 7. Circularly Polarized Antennas
    1. 7.1. Principles of circular polarization
      1. 7.1.1. Elliptical and circular linear polarization
      2. 7.1.2. Right‐ or left‐hand circular polarization
      3. 7.1.3. Axial and cross‐polarization ratios
      4. 7.1.4. Measurement of circular polarization
        1. 7.1.4.1. Measurement of the whole ellipse
        2. 7.1.4.2. Three-point measurement
    2. 7.2. Parasitic radiation — degradation of circular polarization
    3. 7.3. Patch fed by single or dual excitation
      1. 7.3.1. Single excitation
      2. 7.3.2. Dual excitation
    4. 7.4. Sequential array
      1. 7.4.1. Principle of sequential rotation: initial analysis
      2. 7.4.2. Sequential rotation applied to a radiating element fed by multiple feeds
    5. 7.5. Spiral and quadrifilar helix antennas
      1. 7.5.1. Spiral antennas
        1. 7.5.1.1. Frequency independent antennas
        2. 7.5.1.2. Principle of operation in order to obtain circular polarization
      2. 7.5.2. Quadrifilar helix antennas
        1. 7.5.2.1. Monofilar helix antenna
          1. 7.5.2.1.1. Sizing — normal and axial operating modes
          2. 7.5.2.1.2. Study of the normal mode of the monofilar helix
        2. 7.5.2.2. Quadrifilar helix antenna
    6. 7.6. Conclusion
  13. Chapter 8. Wideband Antennas
    1. 8.1. Multiresonant antennas
      1. 8.1.1. Principle
      2. 8.1.2. Widening bandwidth through resonance coupling
    2. 8.2. Traveling wave antennas
      1. 8.2.1. Tapered slot antennas
    3. 8.3. Frequency independent antennas
      1. 8.3.1. Introduction
      2. 8.3.2. Equiangular antennas
      3. 8.3.3. Log‐periodic antennas
      4. 8.3.4. Sinuous antennas
    4. 8.4. Ultra‐wideband antennas
      1. 8.4.1. Biconical and Bow‐Tie antennas
      2. 8.4.2. Planar monopoles
        1. 8.4.2.1. Planar monopoles mounted over infinite ground plane
        2. 8.4.2.2. Reduced ground plane planar monopoles
    5. 8.5. Conclusion
  14. Chapter 9. Miniature Antennas
    1. 9.1. Introduction
    2. 9.2. Which types of antennas should be used for integration?
      1. 9.2.1. Non‐resonant antennas
      2. 9.2.2. Resonant antennas
    3. 9.3. Integration limits in a finite volume
    4. 9.4. Resonant antennas in fundamental mode
      1. 9.4.1. General considerations
      2. 9.4.2. Wire antennas
        1. 9.4.2.1. Half-wave dipole
        2. 9.4.2.2. Monopole antenna
        3. 9.4.2.3. Resonant loop
      3. 9.4.3. Planar antennas
        1. 9.4.3.1. Slots
        2. 9.4.3.2. Patches
      4. 9.4.4. Comparison
      5. 9.4.5. 3D antennas
    5. 9.5. Bulk reduction techniques
      1. 9.5.1. Use of dielectrics with strong permittivity
      2. 9.5.2. Modification of wave path
        1. 9.5.2.1. Inverted L antenna
        2. 9.5.2.2. Helical antenna
        3. 9.5.2.3. Conformed patch antennas
        4. 9.5.2.4. C-patch antenna
      3. 9.5.3. Utilization of inductive, capacitive, and short‐circuit effects
        1. 9.5.3.1. Loaded monopole
        2. 9.5.3.2. Quarter-wave patch
        3. 9.5.3.3. Inverted F antenna
        4. 9.5.3.4. PIFA
      4. 9.5.4. Control over radiation
        1. 9.5.4.1. Folded quarter-wave resonator
        2. 9.5.4.2. Wire-patch
        3. 9.5.4.3. Coplanar wire-patch
    6. 9.6. Multiresonant antennas
    7. 9.7. Synthesis and discussion
  15. Chapter 10. Reconfigurable Antennas
    1. 10.1. Introduction
    2. 10.2. Basic topologies and constraints
    3. 10.3. Switched components: available technologies
    4. 10.4. Frequency reconfigurable antennas (FRAs)
      1. 10.4.1. Introduction
      2. 10.4.2. Examples of radiating slot‐based FRA
      3. 10.4.3. Examples of patch‐ or PIFA‐based FRA integrating switchable slots
      4. 10.4.4. Examples of FRA using switched short circuits
      5. 10.4.5. FRA utilizing a loaded stub
    5. 10.5. Introduction to RAs in terms of polarization and radiation pattern
    6. 10.6. Polarized reconfigurable antennas (PRAs)
    7. 10.7. Radiation pattern reconfigurable antennas (RPRAs)
      1. 10.7.1. RPRA with rotational symmetry and switched parasitics
      2. 10.7.2. RPRA with parasitic elements loaded using switched reactance
        1. 10.7.2.1. Field radiated by an array of coupled antennas — active radiation pattern
        2. 10.7.2.2. Example of a central element fed and coupled to two non-fed and loaded symmetric parasitic elements
        3. 10.7.2.3. Optimization procedures
      3. 10.7.3. Unit cell of reflective array based on a patch of slots [CAD 05]
  16. Chapter 11. Introduction to Antenna Diversity
    1. 11.1. Benefits of antenna diversity
      1. 11.1.1. Effects of multipath propagation
      2. 11.1.2. Principles of antenna diversity
      3. 11.1.3. Non‐ideal antenna diversity
        1. 11.1.3.1. Unbalanced signals
        2. 11.1.3.2. Correlated signals
    2. 11.2. Performance of multiantenna systems
      1. 11.2.1. Antenna balance
      2. 11.2.2. Antenna independence
        1. 11.2.2.1. Utilization of far-field radiation patterns
        2. 11.2.2.2. Utilization of S-parameters
    3. 11.3. Multiantenna systems
      1. 11.3.1. Space diversity
      2. 11.3.2. Compact multiantenna system
    4. 11.4. Conclusion and looking toward MIMO
  17. Bibliography
  18. List of Authors
  19. Index