O'Reilly logo

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Circuit Design: Know It All

Book Description

The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!

Electronics Engineers need to master a wide area of topics to excel. The Circuit Design Know It All covers every angle including semiconductors, IC Design and Fabrication, Computer-Aided Design, as well as Programmable Logic Design.

• A 360-degree view from our best-selling authors
• Topics include fundamentals, Analog, Linear, and Digital circuits
• The ultimate hard-working desk reference; all the essential information, techniques and tricks of the trade in one volume

Table of Contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright Page
  5. About the Authors
  6. Chapter 1. The Fundamentals
    1. 1.1 Electrical Fundamentals
    2. 1.2 Passive Components
    3. 1.3 DC Circuits
    4. 1.4 Alternating Voltage and Current
    5. 1.5 Circuit Simulation
    6. 1.6 Intuitive Circuit Design
    7. 1.7 Troubleshooting Basics
    8. References
  7. Chapter 2. The Semiconductor Diode
    1. Reference
  8. Chapter 3. Understanding Diodes and Their Problems
    1. 3.1 Speed Demons
    2. 3.2 Turn ’em off—turn ’em on…
    3. 3.3 Other Strange Things that Diodes Can Do to You…
    4. 3.4 Zener, Zener, Zener…
    5. 3.5 Diodes that Glow in the Dark, Efficiently
    6. 3.6 Optoisolators
    7. 3.6 Solar Cells
    8. 3.7 Assault and Battery
    9. REFERENCES
  9. Chapter 4. Bipolar Transistors
    1. Reference
  10. Chapter 5. Transistors Field-Effect
    1. Reference
  11. Chapter 6. Identifying and Avoiding Transistor Problems
    1. 6.1 More Beta—More Better?
    2. 6.2 Field-Effect Transistors
    3. 6.3 Power Transistors may Hog Current
    4. 6.4 Apply the 5-Second Rule
    5. 6.5 Fabrication Structures Make a Difference
    6. 6.6 Power-Circuit Design Requires Expertise
    7. 6.7 MOSFETs Avoid Secondary Breakdown
    8. REFERENCES
  12. Chapter 7. Digital Circuit Fundamentals
    1. 7.1 Digital Technology
    2. REFERENCES
  13. Chapter 8. Number Systems
    1. 8.1 Introduction
    2. 8.2 Decimal–Unsigned Binary Conversion
    3. 8.3 Signed Binary Numbers
    4. 8.4 Gray Code
    5. 8.5 Binary-Coded Decimal
    6. 8.6 Octal-Binary Conversion
    7. 8.7 Hexadecimal-Binary Conversion
  14. Chapter 9. Binary Data Manipulation
    1. 9.1 Introduction
    2. 9.2 Logical Operations
    3. 9.3 Boolean Algebra
    4. 9.4 Combinational Logic Gates
    5. 9.5 Truth Tables
    6. REFERENCES
  15. Chapter 10. Combinational Logic Design
    1. 10.1 Introduction
    2. 10.2 NAND and NOR Logic
    3. 10.3 Karnaugh Maps
    4. 10.4 Don’t Care Conditions
    5. REFERENCES
  16. Chapter 11. Sequential Logic Design
    1. 11.1 Introduction
    2. 11.2 Level-Sensitive Latches and Edge-Triggered Flip-Flops
    3. 11.3 The D-Latch and D-Type Flip-Flop
    4. 11.4 Counter Design
    5. 11.5 State Machine Design
    6. 11.6 Moore Versus Mealy State Machines
    7. 11.7 Shift Registers
    8. 11.8 Digital Scan Path
    9. REFERENCES
  17. Chapter 12. Memory
    1. 12.1 Introduction
    2. 12.2 Random Access Memory
    3. 12.3 Read-Only Memory
  18. Chapter 13. Selecting a Design Route
    1. 13.1 Introduction
    2. 13.2 Discrete Implementation
    3. 13.3 Mask Programmable ASICs
    4. 13.4 Field-Programmable Logic
    5. 13.5 VHDL
    6. 13.6 Choosing a Design Route
  19. Chapter 14. Designing with Logic ICs
    1. 14.1 Logic ICs
  20. Chapter 15. Interfacing
    1. 15.1 Mixing Analog and Digital
    2. 15.2 Generating Digital Levels from Analog Inputs
    3. 15.3 Protection Against Externally Applied Overvoltages
    4. 15.4 Isolation
    5. 15.5 Classic Data Interface Standards
    6. 15.6 High Performance Data Interface Standards
  21. Chapter 16. DSP and Digital Filters
    1. 16.1 Origins of Real-World Signals and Their Units of Measurement
    2. 16.2 Reasons for Processing Real-World Signals
    3. 16.3 Generation of Real-World Signals
    4. 16.4 Methods and Technologies Available for Processing Real-World Signals
    5. 16.5 Analog Versus Digital Signal Processing
    6. 16.6 A Practical Example
    7. 16.7 Finite Impulse Response (FIR) Filters
    8. 16.8 FIR Filter Implementation in DSP Hardware Using Circular Buffering
    9. 16.9 Designing FIR Filters
    10. 16.10 Infinite Impulse Response (IIR) Filters
    11. 16.11 IIR Filter Design Techniques
    12. 16.12 Multirate Filters
    13. 16.13 Adaptive Filters
    14. References
  22. Chapter 17. Dealing with High-Speed Logic
    1. References on Dealing with High Speed Logic
  23. Chapter 18. Bridging the Gap between Analog and Digital
    1. 18.1 Try to Measure Temperature Digitally
    2. 18.2 Road Blocks Abound
    3. 18.3 The Ultimate Key to Analog Success
    4. 18.4 How Analog and Digital Design Differ
    5. 18.5 Time and its Inversion
    6. 18.6 Organizing Your Toolbox
    7. 18.7 Set Your Foundation and Move On, Out of The Box
    8. References
  24. Chapter 19. Op-Amps
    1. 19.1 The Magical Mysterious Op-Amp
    2. 19.2 Understanding Op-Amp Parameters
    3. 19.3 Modeling Op-Amps
    4. 19.4 Finding the Perfect Op-Amp
    5. References
  25. Chapter 20. Analog-to-Digital Converters
    1. 20.1 ADCs
    2. 20.2 Types of ADCs
    3. 20.3 ADC Comparison
    4. 20.4 Sample and Hold
    5. 20.5 Real Parts
    6. 20.6 Microprocessor Interfacing
    7. 20.7 Clocked Interfaces
    8. 20.8 Serial Interfaces
    9. 20.9 Multichannel ADCs
    10. 20.10 Internal Microcontroller ADCs
    11. 20.11 Codecs
    12. 20.12 Interrupt Rates
    13. 20.13 Dual-Function Pins on Microcontrollers
    14. 20.14 Design Checklist
  26. Chapter 21. Sensors
    1. 21.1 Instrumentation and Control Systems
    2. 21.2 Transducers
    3. 21.3 Sensors
    4. 21.4 Switches
    5. 21.5 Semiconductor Temperature Sensors
    6. 21.6 Thermocouples
    7. 21.7 Threshold Detection
    8. 21.8 Outputs
    9. 21.9 LED Indicators
    10. 21.10 Driving High-Current Loads
    11. 21.11 Audible Outputs
    12. 21.12 Motors
    13. 21.13 Driving Mains Connected Loads
  27. Chapter 22. Active Filters
    1. 22.1 Introduction
    2. 22.2 Fundamentals of Low-Pass Filters
    3. 22.3 Low-Pass Filter Design
    4. 22.4 High-Pass Filter Design
    5. 22.5 Bandpass Filter Design
    6. 22.6 Band-Rejection Filter Design
    7. 22.7 All-Pass Filter Design
    8. 22.8 Practical Design Hints
    9. 22.9 Filter coefficient tables
    10. References
  28. Chapter 23. Radio-Frequency (RF) Circuits
    1. 23.1 Modulation of Radio Waves
    2. 23.2 Low-Power RF Amplifiers
    3. 23.3 Stability
    4. 23.4 Linearity
    5. 23.5 Noise and Dynamic Range
    6. 23.6 Impedances and Gain
    7. 23.7 Mixers
    8. 23.8 Demodulators
    9. 23.9 Oscillators
    10. REFERENCES
  29. Chapter 24. Signal Sources
    1. 24.1 Voltage References
    2. 24.2 NonsinusoidaI Waveform Generators
    3. 24.3 Sine Wave Generators
    4. 24.4 Voltage-Controlled Oscillators and Phase Detectors
    5. REFERENCES
  30. Chapter 25. EDA Design Tools for Analog and RF
    1. 25.1 The Old Pencil and Paper Design Process
    2. 25.2 Is Your Simulation Fundamentally Valid?
    3. 25.3 Macromodels: What Can They Do?
    4. 25.4 VHDL-AMS
    5. References
  31. Chapter 26. Useful Circuits
    1. 26.1 Introduction
    2. 26.2 Boundary Conditions
    3. 26.3 Amplifiers
    4. 26.4 Computing Circuits
    5. 26.5 Oscillators
    6. 26.6 Some Favorite Circuits
    7. References
  32. Chapter 27. Programmable Logic to ASICs
    1. 27.1 Programmable Read-Only Memory (PROM)
    2. 27.2 Programmable Logic Arrays (PLAs)
    3. 27.3 Programmable Array Logic (PALs)
    4. 27.4 The Masked Gate Array ASIC
    5. 27.5 CPLDs and FPGAs
    6. 27.6 Summary
    7. References
  33. Chapter 28. Complex Programmable Logic Devices (CPLDs)
    1. 28.1 CPLD Architectures
    2. 28.2 Function Blocks
    3. 28.3 I/O Blocks
    4. 28.4 Clock Drivers
    5. 28.5 Interconnect
    6. 28.6 CPLD Technology and Programmable Elements
    7. 28.7 Embedded Devices
    8. 28.8 Summary: CPLD Selection Criteria
    9. References
  34. Chapter 29. Field-Programmable Gate Arrays (FPGAs)
    1. 29.1 FPGA Architectures
    2. 29.2 Configurable Logic Blocks
    3. 29.3 Configurable I/O Blocks
    4. 29.4 Embedded Devices
    5. 29.5 Programmable Interconnect
    6. 29.6 Clock Circuitry
    7. 29.7 SRAM vs. Antifuse Programming
    8. 29.8 Emulating and prototyping ASICs
    9. 29.9 Summary
    10. References
  35. Chapter 30. Design Automation and Testing for FPGAs
    1. 30.1 Simulation
    2. 30.2 Libraries
    3. 30.3 Synthesis
    4. 30.4 Physical Design Flow
    5. 30.5 Place and Route
    6. 30.6 Timing Analysis
    7. 30.7 Design Pitfalls
    8. 30.8 VHDL Issues for FPGA Design
    9. 30.9 Summary
    10. References
  36. Chapter 31. Integrating Processors onto FPGAs
    1. 31.1 Introduction
    2. 31.2 A Simple Embedded Processor
    3. 31.3 Soft Core Processors on an FPGA
    4. 31.4 Summary
  37. Chapter 32. Implementing Digital Filters in VHDL
    1. 32.1 Introduction
    2. 32.2 Converting S-Domain to Z-Domain
    3. 32.3 Implementing Z-Domain Functions in VHDL
    4. 32.4 Basic Low-Pass Filter Model
    5. 32.5 FIR Filters
    6. 32.6 IIR Filters
    7. 32.7 Summary
  38. Chapter 33. Microprocessor and Microcontroller Overview
    1. 33.1 Microprocessor Systems
    2. 33.2 Single-Chip Microcomputers
    3. 33.3 Microcontrollers
    4. 33.4 Microprocessor systems
    5. 33.5 Data Types
    6. 33.6 Data Storage
    7. 33.7 The Microprocessor
    8. 33.8 Microprocessor Operation
    9. 33.9 A Microcontroller System
  39. Chapter 34. Microcontroller Toolbox
    1. 34.1 Microcontroller Supply and Reference
    2. 34.2 Resistor Networks
    3. 34.3 Multiple Input Control
    4. 34.4 AC Control
    5. 34.5 Voltage Monitors and Supervisory Circuits
    6. 34.6 Driving Bipolar Transistors
    7. 34.7 Driving MOSFETs
    8. 34.8 Reading Negative Voltages
    9. 34.9 Example Control System
  40. Chapter 35. Power Supply Overview and Specifications
    1. 35.1 Power Supplies
    2. 35.2 Specifications
    3. 35.3 Off-the-Shelf or Roll Your Own
  41. Chapter 36. Input and Output Parameters
    1. 36.1 Voltage
    2. 36.2 Current
    3. 36.3 Fuses
    4. 36.4 Switch-on Surge, or Inrush Current
    5. 36.5 Waveform Distortion and Interference
    6. 36.6 Frequency
    7. 36.7 Efficiency
    8. 36.8 Deriving the Input Voltage from the Output
    9. 36.9 Low-Load Condition
    10. 36.10 Rectifier and Capacitor Selection
    11. 36.11 Load and Line Regulation
    12. 36.12 Ripple and Noise
    13. 36.13 Transient Response
  42. Chapter 37. Batteries
    1. 37.1 Initial Considerations
    2. 37.2 Primary Cells
    3. 37.3 Secondary Cells
    4. 37.4 Charging
  43. Chapter 38. Layout and Grounding for Analog and Digital Circuits
    1. 38.1 The Similarities of Analog and Digital Layout Practices
    2. 38.2 Where the Domains Differ—Ground Planes Can Be a Problem
    3. 38.3 Where the Board and Component Parasitics Can Do the Most Damage
    4. 38.4 Layout Techniques That Improve ADC Accuracy and Resolution
    5. 38.5 The Art of Laying Out Two-Layer Boards
    6. 38.6 Current Return Paths With or Without a Ground Plane
    7. 38.7 Layout Tricks for a 12-bit Sensing System
    8. 38.8 General Layout Guidelines—Device Placement
    9. 38.9 General Layout Guidelines—Ground and Power Supply Strategy
    10. 38.10 Signal Traces
    11. 38.11 Did I Say Bypass and Use an Anti-Aliasing Filter?
    12. 38.12 Bypass Capacitors
    13. 38.13 Anti-Aliasing Filters
    14. 38.14 PCB Design Checklist
    15. References
  44. Chapter 39. Safety
    1. 39.1 The Hazards of Electricity
    2. 39.2 Safety Classes
    3. 39.3 Insulation Types
    4. 39.4 Design Considerations for Safety Protection
    5. 39.5 Fire Hazard
  45. Chapter 40. Design for Production
    1. 40.1 Checklist
    2. 40.2 The Dangers of ESD
  46. Chapter 41. Testability
    1. 41.1 In-Circuit Testing
    2. 41.2 Functional Testing
    3. 41.3 Boundary Scan and JTAG
    4. 41.4 Design Techniques
  47. Chapter 42. Reliability
    1. 42.1 Definitions
    2. 42.2 The Cost of Reliability
    3. 42.3 Design for Reliability
    4. 42.4 The Value of MTBF Figures
    5. 42.5 Design Faults
  48. Chapter 43. Thermal Management
    1. 43.1 Using Thermal Resistance
    2. 43.2 Heatsinks
    3. 43.3 Power Semiconductor Mounting
    4. 43.4 Placement and Layout
  49. APPENDIX A: Standards
  50. Index