## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

Chapter 17

Implementing Laplace Techniques for Circuit Analysis

In This Chapter

Starting with basic constraints in the s-domain

Looking at voltage and current divider techniques in the s-domain

Using superposition, Thévenin, Norton, node voltages, and mesh currents in the s-domain

This chapter is all about applying Laplace transform techniques in order to study circuits that have voltage and current signals changing with time. That may sound complex, but it’s really no more difficult than analyzing resistor-only circuits. You see, the Laplace method converts a circuit to the s-domain so you can study the circuit’s action using only algebraic techniques (rather than the calculus techniques I show you in Chapters 13 and 14). The algebraic approach in the s-domain follows along the same lines as resistor-only circuits, except in place of resistors, you have s-domain impedances.

If you need a refresher on impedance or the Laplace transform in general, see Chapters 15 and 16, respectively. Otherwise, I invite you to dive into this chapter, which first has you describe the element and connection constraints in the s-domain. You then see how the s-domain approach works when you apply ...

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required