You are previewing Chemical Sensors: Comprehensive Sensor Technologies Volume 4: Solid State Devices.
O'Reilly logo
Chemical Sensors: Comprehensive Sensor Technologies Volume 4: Solid State Devices

Book Description

Chemical sensors are integral to the automation of myriad industrial processes, as well as everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. This massive reference work will cover all major categories of chemical sensor materials and devices, and their general functional usage...from monitoring and analyzing gases, to analyzing liquids and compounds of all kinds. This is THE reference work on sensors used for chemical detection and analysis. In this fourth volume will be found detailed background on all major classes of solid-state-based chemical sensors including metal oxide-based conductometric gas sensors; Schottky-, FET-, and work-function chemical sensors; capacitance-type chemical sensors; pyroelectric (thermoelectric) gas sensors; some new views on Pellistors; mass-sensitive chemical sensors; acoustic-wave-chemical sensors; and integrated chemical sensors.

Table of Contents

  1. Cover Page
  2. Title Page
  3. Copyright
  4. Contents
  5. Preface to Chemical Sensors: Comprehensive Sensors Technologies
  6. Preface to Volume 4: Solid-State Devices
  7. About the Editor
  8. Contributors
  9. 1   Introduction to Chemical Sensor Technologies
    1. 1   Definitions and Classifications
    2. 2   A Brief History of Chemical Sensors
    3. 3   Motivations for Design of Chemical Sensors
    4. 4   What Determines Success in Chemical Sensor Design?
    5. 5   Materials for Chemical Sensors
      1. 5.1   Metal Oxides
      2. 5.2   Polymers
      3. 5.3   New Trends in Sensing Materials
    6. 6   Some Useful Definitions
    7. 7   Acknowledgments
    8. References
  10. 2   Sensing and Sampling Strategies
    1. 1   Introduction
    2. 2   Sensing Parameters
      1. 2.1   Sensitivity
      2. 2.2   Selectivity
      3. 2.3   Response and Recovery Rates
      4. 2.4   Saturation
      5. 2.5   Resolution
      6. 2.6   Noise
    3. 3   Sensor Fundamentals
    4. 4   Sensor Test Methods
    5. 5   Sensor Calibration
    6. 6   Repeatability and Stability of Sensors
    7. 7   Signal Sampling and Data Processing
    8. 8   Signal Processing for Single Sensors
    9. 9   Signal Processing in a Multisensor Environment
    10. References
  11. 3   Conductometric Metal Oxide Gas Sensors: Principles of Operation and Approaches to Fabrication
    1. 1   Introduction
    2. 2   Fundamentals of Gas Sensing Effects in Metal Oxide–Based Sensors: Main Principles of Metal Oxide Gas Sensor Operation
      1. 2.1   Bulk-Conduction Model: Solid Electrolyte–Based Conductometric Gas Sensors (High-Temperature Operation)
      2. 2.2   Ionsorption Model (Chemiresistors, Low-Temperature Operation)
      3. 2.3   Requirements for Metal Oxides to be Used at Low and High Temperatures
      4. 2.4   Advantages and Disadvantages of Low- and High-Temperature Operation of Gas Sensors
    3. 3   Metal Oxides Employed in Conductometric Gas Sensors
      1. 3.1   High-Temperature Sensors (Solid Electrolyte–Based Sensors)
      2. 3.2   Low-Temperature Sensors (Chemiresistors)
    4. 4   Approaches to Gas Sensor Fabrication
      1. 4.1   Ceramic Sensors
      2. 4.2   Planar Sensors
      3. 4.3   Features of Thick-Film Technology
      4. 4.4   Thin-Film Technology
      5. 4.5   Kinetics of Metal Oxide Gas Sensor Response: Processes Controlling the Rate of Sensor Response
      6. 4.6   The Role of Thermal Treatments in Gas Sensor Fabrication
      7. 4.7   Material Requirements for Packaging of Gas Sensors
    5. 5   Other Approaches to the Design of Conductometric Gas Sensors
      1. 5.1   Conductometric Sensors Based on 1-D Nanostructures
      2. 5.2   One-Electrode Gas Sensors
    6. 6   Miniaturization and Microfabrication
      1. 6.1   Microfabrication
      2. 6.2   Integrated Conductometric Gas Sensors
      3. 6.3   Advantages and Disadvantages of Microfabrication
    7. 7   Approaches to Optimization (Improvement) of Conductometric Gas Sensor Parameters
      1. 7.1   Structure Control
      2. 7.2   Bulk Doping and Surface Modification
      3. 7.3   Engineering Approaches to Improving Sensitivity
      4. 7.4   Approaches for Improving Gas Sensor Selectivity
      5. 7.5   Approaches to Optimizing the Rate of Sensor Response
      6. 7.6   Stability
    8. 8   Sensor Manufacturers
    9. 9   Outlook for the Future
    10. References
  12. 4   Work Function–Based Gas Sensors: Schottky- and Fet-Based Devices
    1. 1   Introduction
    2. 2   Theoretical Background: Gas Adsorption and Work Function Change
      1. 2.1   Gas Adsorption on Solid Surfaces
      2. 2.2   The Work Function
    3. 3   Transducers
      1. 3.1   Basic Principles of Gas-Sensing Devices
      2. 3.2   Transducers for Interfacial Work Function Changes
      3. 3.3   Transducers for Surface Work Function Changes
      4. 3.4   Transducers for High-Temperature Operation
    4. 4   Application Example: The Temperature-Controlled Phase-Transition FET (TPT-FET)
      1. 4.1   Introduction
      2. 4.2   The Sensing Effect
      3. 4.3   Fabrication of the Sensor
      4. 4.4   Work Function Change at Constant Temperature
      5. 4.5   Temperature Dependence of the Work Function Change
      6. 4.6   Operation of Temperature-Controlled Sensors
      7. 4.7   Response Time
      8. 4.8   The TPT-FET: A Benchmark
    5. 5   Summary
    6. References
  13. 5   Capacitance-Type Chemical Sensors
    1. 1   Introduction
    2. 2   Permittivity Sensors
      1. 2.1   Parallel-Plate Sensors
      2. 2.2   Interdigitated Electrode Sensors
      3. 2.3   Capacitance-Type Chemical Sensors on Flexible Substrates
      4. 2.4   Materials Used in Capacitance-Type Chemical Sensors
    3. 3   Bimorph Capacitance-Type Chemical Sensors
      1. 3.1   Parameters for Effective Chemical Sensing
      2. 3.2   Cantilever Bimorph Sensors
      3. 3.3   Membrane Bimorph Sensors
    4. 4   Outlook for Capacitance-Type Chemical Sensors
    5. References
  14. 6   Gas Sensors Using Pyroelectric and Thermoelectric Effects
    1. 1   Fundamentals of Sensor Operation
      1. 1.1   Pyroelectricity
      2. 1.2   Thermoelectricity
    2. 2   Materials of Thermal Energy Conversion
      1. 2.1   Pyroelectric Materials
      2. 2.2   Thermoelectric Materials
    3. 3   Fabrication and Packaging
      1. 3.1   Transducer Films
      2. 3.2   Catalyst Deposition
      3. 3.3   Membrane Structure by Bulk Wet Etching
    4. 4   Parameters
      1. 4.1   Transducer Performance
      2. 4.2   Detectivity of Pyroelectric Devices
      3. 4.3   Seebeck Coefficients of Thermoelectric Devices
      4. 4.4   Catalyst Performance
      5. 4.5   Catalyst Parameters
    5. 5   Approaches to Optimization of Sensor Parameters
      1. 5.1   Pyroelectric Sensors
      2. 5.2   AC Pyroelectric Sensors
      3. 5.3   Thermoelectric Sensors
      4. 5.4   Long-Term Stability of the Ceramic Catalyst
      5. 5.5   Gas Selectivity
    6. 6   Fields of Application and Market for Sensors
    7. 7   Summary
    8. References
  15. 7   Calorimetric Sensors
    1. 1   Introduction
    2. 2   Fundamentals of Calorimetric Sensor Operation
    3. 3   Catalytic Bead Devices
    4. 4   Thin-Film and MEMS Devices
    5. 5   Materials
    6. 6   Poisoning
    7. 7   Signal Analysis and Operating Modes
    8. 8   Packaging
    9. 9   Applications
      1. 9.1   Gas Detection
      2. 9.2   Biological Applications
      3. 9.3   Safety
    10. 10   Conclusions
    11. References
  16. 8   Microcantilever-Based Chemical Sensors
    1. 1   Introduction
    2. 2   Microcantilevers and Their Modes of Operation
      1. 2.1   Operating Modes for Cantilever Mass Sensors
    3. 3   Microcantilever Deflection Detection Methods
      1. 3.1   Optical Method
      2. 3.2   Piezoresistive Method
      3. 3.3   Capacitive Method
      4. 3.4   Piezoelectric Method
      5. 3.5   Interferometry Method
      6. 3.6   Optical Diffraction Grating Method
      7. 3.7   Charge-Coupled Device Detection Method
    4. 4   Resonant Operating Mode
      1. 4.1   Mechanical Properties of Microcantilevers
      2. 4.2   Mass Resolution Limitations
      3. 4.3   Influence of Surrounding Conditions
    5. 5   Bending Behavior of Microcantilevers
    6. 6   Excitation Techniques
    7. 7   Fabrication of Microcantilevers
      1. 7.1   Silicon-Based Microcantilevers
      2. 7.2   Polymer-Based Microcantilevers
    8. 8   Surface Functionalization
      1. 8.1   General Strategy
      2. 8.2   Sorption-Induced Effects and Their Influence on Cantilever Operation
      3. 8.3   Functionalization Methods
      4. 8.4   Immobilization of Bioreceptors
    9. 9   Microcantilever-Based Sensors
    10. 10   Applications of Cantilever-Based Chemical Sensors
      1. 10.1   Gas Sensing
      2. 10.2   Detection of Herbicides
      3. 10.3   Detection of Metal Ions
      4. 10.4   Humidity Sensing
      5. 10.5   Detection of Volatile Organic Compounds
      6. 10.6   Detection of Tributyrin
      7. 10.7   Monitoring of Missile Storage and Maintenance Needs
      8. 10.8   pH Sensing
    11. 11   Biosensing Applications
      1. 11.1   Detection of DNA
      2. 11.2   Detection of Prostate-Specific Antigen
      3. 11.3   Detection of Hydrogen Peroxide
      4. 11.4   Detection of Myoglobin
      5. 11.5   Detection of Lipoproteins
      6. 11.6   Detection of Glucose
    12. 12   Ultrasensitive Nanocantilevers
    13. 13   An Electronic Nose Based on a Micromechanical Cantilever Array
    14. 14   Commercial Status
    15. 15   Outlook and Future Trends
    16. References
  17. 9   The Quartz Crystal Microbalance
    1. 1   Introduction
      1. 1.1   Short History of the QCM Approach
      2. 1.2   Principle of Biosensoring
    2. 2   Piezoelectric Materials
      1. 2.1   Piezoelectric Materials Other Than Quartz
      2. 2.2   Quartz as a Piezoelectric Material
    3. 3   Basics of QCM Operation
      1. 3.1   Principles of the QCM
      2. 3.2   Construction and Stability of the QCM
      3. 3.3   Configuration of QCM Electrodes
      4. 3.4   Miniaturization and Integration in Arrays; the MQCM
      5. 3.5   QCM-D Technique
      6. 3.6   Some Disadvantages of the QCM
    4. 4   Theoretical Analysis of the QCM Response
      1. 4.1   Physical Analysis of the Propagation of Transverse Shear Waves in a Loaded Quartz Resonator
      2. 4.2   Equivalent Circuit Models
      3. 4.3   Simultaneous Viscoelastic and Liquid Loading of the Quartz Resonator: Three Models
      4. 4.4   Newtonian Liquid–Loaded Quartz Resonator
      5. 4.5   Thin Viscoelastic Layer Loading
      6. 4.6   Mass Loading of the Quartz Resonator: A Short Summary
    5. 5   Applications of QCM-Based Sensors
      1. 5.1   Gas Sensors
      2. 5.2   QCM Coatings: Basic Requirements for Sensing Layer
      3. 5.3   Liquid-Phase Measurements; Electrochemical QCM
      4. 5.4   Nanotribology Challenges
      5. 5.5   QCM Biosensors: Selected Examples
    6. 6   Outlook
    7. 7   Quartz Crystal and Quartz Crystal Microbalance Companies
    8. 8   Nomenclature
    9. 9   Acknowledgments
    10. 10   Recommendations for Further Reading
    11. References
  18. 10 Surface Acoustic Wave Sensors for Chemical Applications
    1. 1   Introduction
    2. 2   State-of-the-Art SAW Sensors
      1. 2.1   Principle—The Piezoelectric Effect
      2. 2.2   Piezoelectric Materials
      3. 2.3   Design—Interdigital Transducers
      4. 2.4   Fabrication—Photolithography
      5. 2.5   Sensor Effect—The Sauerbrey Equation
      6. 2.6   SAW Sensors in Liquids
      7. 2.7   SAW Sensor Characteristics
    3. 3   Coating Materials
      1. 3.1   Nonselective Polymers
      2. 3.2   Conductive Polymers
      3. 3.3   Host–Guest Chemistry
      4. 3.4   Imprinting
      5. 3.5   Self-Assembled Monolayers
      6. 3.6   Other Coating Materials
    4. 4   Applications
      1. 4.1   Gases
      2. 4.2   Organic Vapors
      3. 4.3   Liquids
    5. 5   Comparing Surface and Bulk Acoustic Wave Devices
    6. 6   The Market for SAW Sensors
    7. 7   Abilities and Limitations of SAW Sensors
    8. 8   Outlook
    9. References
  19. 11 Integrated Chemical Sensors
    1. 1   Introduction
    2. 2   CMOS Technology
      1. 2.1   Overview of CMOS Technology
      2. 2.2   Micromachining CMOS
      3. 2.3   Gas Sensor Fabricated Using Industrial CMOS Technology Developed at Eth Zürich
      4. 2.4   Electrochemical Sensors Fabricated Using Standard CMOS Technology
    3. 3   Nist CMOS MEMS Technology
      1. 3.1   Pecularities of NIST CMOS MEMS Technology
      2. 3.2   Conductometric Chemical Gas Sensor Using NIST CMOS MEMS Technology
    4. 4   CMU CMOS MEMS Technology
    5. 4.1   CMU CMOS MEMS Fabrication Technology Overview
      1. 4.2   Resonant Microbeam Gas Sensor Fabricated Using CMU CMOS MEMS Technology
    6. 5   Jazz SiGe BiCMOS Technology
      1. 5.1   Jazz SiGe BiCMOS Technology Overview
      2. 5.2   Gas Sensor Fabricated Using Jazz SiGe BiCMOS Technology
    7. 6   Other Types of MEMS Gas Sensors Integrated in CMOS Technology
      1. 6.1   SAW Resonator as Chemical Gas Sensor Integrated in Industrial CMOS Technology
      2. 6.2   Optical Chemical Sensors in CMOS Technology
    8. 7   Conclusions
    9. References
  20. Index
  21. Back Cover