O'Reilly logo

Categorical Data Analysis Using The SAS® System, 2nd Edition by Gary G. Koch, Charles S. Davis, Maura E. Stokes

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

15.11. GEE Analyses for Data with Missing Values

One of the main advantages of the GEE method is that it addresses the possibility of missing values. The number of responses per subject, or cluster, can vary; recall that you can have ti responses per subject, where ti depends on the ith subject. While the data sets analyzed in previous sections were complete, or balanced, you are faced with missing data in many situations, especially for observational data that are longitudinal. Loss to follow-up is a common problem for planned studies that involve repeated visits. The GEE method works nicely for many of these data situations. Note however, that the GEE method does assume that the missing values are missing completely at random, or MCAR.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required