You are previewing Bonds and Bands in Semiconductors.
O'Reilly logo
Bonds and Bands in Semiconductors

Book Description

This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: the essential principles of chemical bonding, electron energy bands and their relationship to conductive and semi-conductive material behavior; the coverage on elastics and piezoelectric constants, lattice vibrations, charge densities, optical spectra, thermo-chemistry and other key elements of semiconductor behavior and function; and, new chapters on crystalline semiconductor interfaces, amorphous semiconductors and crystalline/amorphous interfaces.

Table of Contents

  1. Cover Page
  2. Title Page
  3. Copyright
  4. Contents
  5. Preface to the First Edition
  6. Preface to the Second Edition
  7. 1 Crystal Structures
    1. Energy Bands
    2. Metals, insulators, and Semiconductors
    3. Allowed and Forbidden Energies
    4. Valence Bonds
    5. Bond Counting
    6. Atomic Orbitals
    7. Hybridized Orbitals
    8. Bonding Definitions and Rules
    9. Bond Energy Gaps and Band Energy Gaps
    10. Tetrahedral Coordination
    11. Layer Structures
    12. Fluorite Bonds
    13. Relativistic Structures
    14. Chalcogenides
    15. Defect and Excess Compounds
    16. Transition Metal Semiconductors
    17. Bond Lengths and Radii
    18. Rationalized Radii
    19. Impurity Radii
    20. Layer Bonds
    21. Summary
    22. References
  8. 2 Covalent and Ionic Bonds
    1. Electronic Configurations of Atoms
    2. Core d Electrons
    3. Universal Semiconductor Model
    4. Covalent and Ionic Character
    5. Symmetric and Antisymmetric Potentials
    6. Coulson Definition of Ionicity
    7. Pauling Definition of Ionicity
    8. Extension of Pauling’s Definition To Crystals
    9. Limitations of Pauling’s Definition
    10. The Middle Way
    11. Homopolar Energy Gaps
    12. Complex Energy Gaps and Resonance
    13. Heteropolar Energy Gaps
    14. Modern Definition of Ionicity
    15. Statistical Test of Definitions of Ionicity
    16. Borderline Crystals
    17. True (Undistorted) Scales
    18. Cohesive Energies
    19. Itinerant Character of Covalent Binding
    20. Core Corrections
    21. Electronegativity Table
    22. Historical Note
    23. Summary
    24. References
  9. 3 Elastic and Piezoelectric Constants
    1. Stresses and Strains
    2. Harmonic Strain Energy
    3. Invariance Conditions
    4. Model Force Fields
    5. Diamond Lattice
    6. Zincblende Lattice
    7. Hear Constants and Ionicity
    8. Internal Strains
    9. Piezoelectric Constants
    10. Origin of Piezoelectric Effects
    11. Wurtzite Crystals
    12. Chalcopyrite Crystals
    13. Summary
    14. References
  10. 4 Lattice Vibrations
    1. Brillouin Zones
    2. Experimental Determination of ω(K)
    3. Normal Modes
    4. Mode Descriptions
    5. Sum Rules
    6. Optically Active Modes
    7. Infrared Modes and Effective Charges
    8. Raman Active Modes
    9. Polaritons
    10. Dispersion Curves of Diamond-Type Semiconductors
    11. Electrostatic Models
    12. Zincblende-Type Dispersion Curves
    13. Metallization in Gray Sn
    14. Thermal Expansion
    15. Vibrations of Impurity Atoms
    16. Summary
    17. References
  11. 5 Energy Bands
    1. The Language of Band Theory
    2. Nearly Free Electron Model
    3. Valence Bands of Silicon
    4. Jones Zone
    5. Simplified Bands
    6. Isotropic Model
    7. Secular Equation
    8. Dielectric Function of Isotropic Model
    9. Important Anisotropies
    10. Conduction Bands
    11. Band-Edge Curvatures
    12. Perturbation Theory
    13. Special Cases
    14. Atomic Orbitals
    15. Specific Band Structures
    16. Diamond and Silicon
    17. Germanium and Gallium Arsenide
    18. Indium Antimonide and Arsenide
    19. Gray Tin and The Mercury Chalcogenides
    20. Effective Mass Parameters
    21. The PbS Family
    22. Summary
    23. References
  12. 6 Pseudopotentials and Charge Densities
    1. Atomic Wave Functions
    2. Atomic Pseudopotentials
    3. Crystal Potential
    4. Crystal Wave Functions
    5. Pseudoatom Form Factors
    6. Metallic Binding
    7. Covalent Binding
    8. Ionic Binding
    9. Semiconductor Wave Functions
    10. Pseudocharge Densities
    11. Atomic Charges
    12. Bond Charges
    13. Partially Ionic Charge Distributions
    14. Conduction Band States
    15. Pressure Dependence of Band Edges
    16. Temperature Dependence of Energy Gaps
    17. Summary
    18. References
  13. 7 Fundamental Optical Spectra
    1. One-Electron Excitations
    2. Line and Continuum (Band) Spectra
    3. Dielectric Function
    4. Sum Rules
    5. Direct Thresholds
    6. Germanium
    7. Photoemission
    8. Derivative Techniques
    9. Interband Energies
    10. Core d Electrons
    11. Spectroscopic Definitions of Valence
    12. Chemical Trends in Interband Energies
    13. Spin–Orbit Splittings
    14. Crystal Field Splittings
    15. Nonlinear Susceptibilities
    16. Summary
    17. References
  14. 8 Thermochemistry of Semiconductors
    1. Cohesive Energies
    2. Pauling’s Description
    3. Ionicity and Metallization
    4. Heats of Formation
    5. Entropies of Fusion
    6. The PbS or AN B10–N Family
    7. Pressure-induced Phase Transitions
    8. Ideal Solutions
    9. Regular Solutions
    10. Pseudobinary Alloys
    11. Bowing Parameters
    12. Crystallization of Pseudobinary Alloys
    13. Virtual Crystal Model
    14. Optical Transitions in Elemental Alloys
    15. Energy Gaps in Pseudobinary Alloys
    16. Summary
    17. References
  15. 9 Impurities
    1. Crystal Growth and Perfection
    2. Stoichiometry of Compound Semiconductors
    3. Shallow and Deep Impurity States
    4. Diffusion of Interstitial and Substitutional Impurities
    5. Distribution Coefficients
    6. Donors and Acceptors
    7. Isovalent Impurities
    8. Spherical (Hydrogenic) Models
    9. Band-Edge Degeneracies
    10. Valley Anisotropies
    11. Chemical Shifts and Central Cell Corrections
    12. Impurity States in Compound Semiconductors
    13. Free and Bound Excitons
    14. Donor–Acceptor and Isovalent Pairs
    15. Self-Compensation
    16. Polyvalent Impurities
    17. Transition Metal Impurities
    18. Summary
    19. References
  16. 10 Barriers, Junctions, and Devices
    1. Fermi Levels
    2. Band Bending
    3. Metal-Semiconductor Contacts
    4. p-n Junctions
    5. Carrier Injection and Trapping
    6. Junction Transistors
    7. Tunnel Diodes
    8. Avalanche Diodes
    9. Why Si?
    10. Microwave Evolution
    11. Luminescence
    12. Junction Lasers
    13. Intervalley Transfer Oscillators
    14. Semiconductors and Materials Science
    15. References
  17. 11 Crystalline Semiconductor Interfaces
    1. Misfit Dislocations
    2. Quantum Wells and MQW
    3. MQW Internet Lasers
    4. The Race to the Internet Laser
    5. Quality Control in Manufacturing Internet Lasers
    6. Pulsed Internet Lasers
    7. Rainbow Light-Emitting (Laser) Diodes
    8. References
  18. 12 Amorphous Semiconductors
    1. Intermediate Phases and the Reversibility Window
    2. Broader Aspects of Intermediate Phases
    3. Amorphous Si Solar Cells
    4. Thin Film Transistors
    5. Larger Scale Stress Relief
    6. References
  19. 13 Crystalline/Amorphous Interfaces
    1. Silica and Window Glass
    2. Nature’s Miraculous Interface
    3. High-K Dielectrics
    4. References
  20. Author Index
  21. Subject Index