You are previewing Big Data Analytics: Turning Big Data into Big Money.

Big Data Analytics: Turning Big Data into Big Money

Cover of Big Data Analytics: Turning Big Data into Big Money by Frank J. Ohlhorst Published by John Wiley & Sons
  1. Cover
  2. Contents
  3. Title
  4. Copyright
  5. Preface
  6. Acknowledgments
  7. Chapter 1: What is Big Data?
    1. The Arrival of Analytics
    2. Where is the Value?
    3. More to Big Data Than Meets the Eye
    4. Dealing with the Nuances of Big Data
    5. An Open Source Brings Forth Tools
    6. Caution: Obstacles Ahead
  8. Chapter 2: Why Big Data Matters
    1. Big Data Reaches Deep
    2. Obstacles Remain
    3. Data Continue to Evolve
    4. Data and Data Analysis are Getting More Complex
    5. The Future is Now
  9. Chapter 3: Big Data and the Business Case
    1. Realizing Value
    2. The Case for Big Data
    3. The Rise of Big Data Options
    4. Beyond Hadoop
    5. With Choice Come Decisions
  10. Chapter 4: Building the Big Data Team
    1. The Data Scientist
    2. The Team Challenge
    3. Different Teams, Different Goals
    4. Don’t Forget the Data
    5. Challenges Remain
    6. Teams versus Culture
    7. Gauging Success
  11. Chapter 5: Big Data Sources
    1. Hunting for Data
    2. Setting the Goal
    3. Big Data Sources Growing
    4. Diving Deeper into Big Data Sources
    5. A Wealth of Public Information
    6. Getting Started with Big Data Acquisition
    7. Ongoing Growth, No End in Sight
  12. Chapter 6: The Nuts and Bolts of Big Data
    1. The Storage Dilemma
    2. Building a Platform
    3. Bringing Structure to Unstructured Data
    4. Processing Power
    5. Choosing among In-house, Outsourced, or Hybrid Approaches
  13. Chapter 7: Security, Compliance, Auditing, and Protection
    1. Pragmatic Steps to Securing Big Data
    2. Classifying Data
    3. Protecting Big Data Analytics
    4. Big Data and Compliance
    5. The Intellectual Property Challenge
  14. Chapter 8: The Evolution of Big Data
    1. Big Data: The Modern Era
    2. Today, Tomorrow, and the Next Day
    3. Changing Algorithms
  15. Chapter 9: Best Practices for Big Data Analytics
    1. Start Small with Big Data
    2. Thinking Big
    3. Avoiding Worst Practices
    4. Baby Steps
    5. The Value of Anomalies
    6. Expediency versus Accuracy
    7. In-Memory Processing
  16. Chapter 10: Bringing it All Together
    1. The Path to Big Data
    2. The Realities of Thinking Big Data
    3. Hands-on Big Data
    4. The Big Data Pipeline in Depth
    5. Big Data Visualization
    6. Big Data Privacy
  17. Appendix: Supporting Data
    1. “The MapR Distribution for Apache Hadoop”
    2. “High Availability: No Single Points of Failure”
  18. About the Author
  19. Index

Chapter 10

Bringing It All Together

The promises offered by data-driven decision making have been widely recognized. Businesses have been using business intelligence (BI) and business analytics for years now, realizing the value offered by smaller data sets and offline advanced processing. However, businesses are just starting to realize the value of Big Data analytics, especially when paired with real-time processing.

That has led to a growing enthusiasm for the notion of Big Data, with businesses of all sizes starting to throw resources behind the quest to leverage the value out of large data stores composed of structured, semistructured, and unstructured data. Although the promises wrapped around Big Data are very real, there is still a wide gap between its potential and its realization.

That wide gap is highlighted by those who have successfully used the concepts of Big Data at the outset. For example, it is estimated that Google alone contributed $54 billion to the U.S. economy in 2009, a significant economic effect, mostly attributed to the ability to handle large data sets in an efficient manner.

That alone is probably reason enough for the majority of businesses to start evaluating how Big Data analytics can affect the bottom line, and those businesses should probably start evaluating Big Data promises sooner rather than later.

Delving into the value of Big Data analytics reveals that elements such as heterogeneity, scale, timeliness, complexity, and privacy problems can ...

The best content for your career. Discover unlimited learning on demand for around $1/day.