You are previewing Big Data Analytics: Turning Big Data into Big Money.

Big Data Analytics: Turning Big Data into Big Money

Cover of Big Data Analytics: Turning Big Data into Big Money by Frank J. Ohlhorst Published by John Wiley & Sons
  1. Cover
  2. Contents
  3. Title
  4. Copyright
  5. Preface
  6. Acknowledgments
  7. Chapter 1: What is Big Data?
    1. The Arrival of Analytics
    2. Where is the Value?
    3. More to Big Data Than Meets the Eye
    4. Dealing with the Nuances of Big Data
    5. An Open Source Brings Forth Tools
    6. Caution: Obstacles Ahead
  8. Chapter 2: Why Big Data Matters
    1. Big Data Reaches Deep
    2. Obstacles Remain
    3. Data Continue to Evolve
    4. Data and Data Analysis are Getting More Complex
    5. The Future is Now
  9. Chapter 3: Big Data and the Business Case
    1. Realizing Value
    2. The Case for Big Data
    3. The Rise of Big Data Options
    4. Beyond Hadoop
    5. With Choice Come Decisions
  10. Chapter 4: Building the Big Data Team
    1. The Data Scientist
    2. The Team Challenge
    3. Different Teams, Different Goals
    4. Don’t Forget the Data
    5. Challenges Remain
    6. Teams versus Culture
    7. Gauging Success
  11. Chapter 5: Big Data Sources
    1. Hunting for Data
    2. Setting the Goal
    3. Big Data Sources Growing
    4. Diving Deeper into Big Data Sources
    5. A Wealth of Public Information
    6. Getting Started with Big Data Acquisition
    7. Ongoing Growth, No End in Sight
  12. Chapter 6: The Nuts and Bolts of Big Data
    1. The Storage Dilemma
    2. Building a Platform
    3. Bringing Structure to Unstructured Data
    4. Processing Power
    5. Choosing among In-house, Outsourced, or Hybrid Approaches
  13. Chapter 7: Security, Compliance, Auditing, and Protection
    1. Pragmatic Steps to Securing Big Data
    2. Classifying Data
    3. Protecting Big Data Analytics
    4. Big Data and Compliance
    5. The Intellectual Property Challenge
  14. Chapter 8: The Evolution of Big Data
    1. Big Data: The Modern Era
    2. Today, Tomorrow, and the Next Day
    3. Changing Algorithms
  15. Chapter 9: Best Practices for Big Data Analytics
    1. Start Small with Big Data
    2. Thinking Big
    3. Avoiding Worst Practices
    4. Baby Steps
    5. The Value of Anomalies
    6. Expediency versus Accuracy
    7. In-Memory Processing
  16. Chapter 10: Bringing it All Together
    1. The Path to Big Data
    2. The Realities of Thinking Big Data
    3. Hands-on Big Data
    4. The Big Data Pipeline in Depth
    5. Big Data Visualization
    6. Big Data Privacy
  17. Appendix: Supporting Data
    1. “The MapR Distribution for Apache Hadoop”
    2. “High Availability: No Single Points of Failure”
  18. About the Author
  19. Index
O'Reilly logo

Chapter 8

The Evolution of Big Data

To truly understand the implications of Big Data analytics, one has to reach back into the annals of computing history, specifically business intelligence (BI) and scientific computing. The ideology behind Big Data can most likely be tracked back to the days before the age of computers, when unstructured data were the norm (paper records) and analytics was in its infancy. Perhaps the first Big Data challenge came in the form of the 1880 U.S. census, when the information concerning approximately 50 million people had to be gathered, classified, and reported on.

With the 1880 census, just counting people was not enough information for the U.S. government to work with—particular elements, such as age, sex, occupation, education level, and even the “number of insane people in household,” had to be accounted for. That information had intrinsic value to the process, but only if it could be tallied, tabulated, analyzed, and presented. New methods of relating the data to other data collected came into being, such as associating occupations with geographic areas, birth rates with education levels, and countries of origin with skill sets.

The 1880 census truly yielded a mountain of data to deal with, yet only severely limited technology was available to do any of the analytics. The problem of Big Data could not be solved for the 1880 census, so it took over seven years to manually tabulate and report on the data.

With the 1890 census, things began to change, ...

The best content for your career. Discover unlimited learning on demand for around $1/day.