4.1 INTRODUCTION

Linear predictive coders are embedded in several telephony and multimedia standards [G.729] [G.723.1] [IS-893] [ISOI99]. Linear predictive coding (LPC) [Kroo95] is mostly used for source coding of speech signals and the dominant application of LPC is cellular telephony. Recently linear prediction (LP) analysis/synthesis has also been integrated in some of the wideband speech coding standards [G.722] [G.722.2] [Bess02] and in audio modeling [Iwak96] [Mori96] [Harm97a] [Harm97b] [Bola98] [ISOI00].

LP analysis/synthesis exploits the short- and long-term correlation to parameterize the signal in terms of a source-system representation. LP analysis can be open loop or closed loop. In closed-loop analysis, also called analysis-by-synthesis, the LP parameters are estimated by minimizing the “perceptually weighted” difference between the original and reconstructed signal. Speech coding standards use a perceptual weighting filter (PWF) to shape the quantization noise according to the masking properties of the human ear [Schr79] [Kroo95] [Sala98]. Although the PWF has been successful in speech coding, audio coding requires a more sophisticated strategy to exploit perceptual redundancies. To this end, several extensions [Bess02] [G.722.2] to the conventional LPC have been proposed. Hybrid transform/predictive coding techniques have also been employed for high-quality, low-bit-rate coding [Ramp98] [Ramp99] [Rong99] [ISOI99] [ISOI00]. Other LP methods that make use of perceptual ...

Get Audio Signal Processing and Coding now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.