O'Reilly logo

Apache Spark for Data Science Cookbook by Padma Priya Chitturi

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Implementing Naive Bayes' classification

Naive Bayes is a simple probabilistic classifier based on the Bayes theorem. This classifier is capable of calculating the most probable output depending on the input. It is possible to add new raw data at runtime and have a better probabilistic classifier. The Naive Bayes model is typically used for classification. There will be a bunch of features X1, X2,....Xn observed for an instance. The goal is to infer to which class among the limited set of classes the particular instance belongs. This model makes the assumption that every pair of features Xi and Xj is conditionally independent given the class. This classifier is a sub-class of Bayesian networks. For more information about the classifier, please ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required