Preface

The global navigation satellite system (GNSS) is becoming yet another pillar technology in today's society along with the Internet and mobile communications. GNSS offers a range of services, such as navigation, positioning, public safety and surveillance, geographic surveys, time standards, mapping, and weather and atmospheric information. The usage of GNSS applications has become nearly ubiquitous from the ever-growing demand of navigation facilities made available in portable personal navigation devices (PNDs). Sales of mobile devices including smart phones with integrated GNSS are expected to grow from 109 million units in 2006 to 444 million units in 2012, and this sector of industry is second only to the mobile phone industry. The navigation industry is predicted to earn a gross total of $130 billion in 2014. The current developments and expected future growth of GNSS usage demand the availability of more sophisticated terminal antennas than those previously deployed.

The antenna is one of most important elements on a GNSS device. GNSS antennas are becoming more complex every day due to the integration of different GNSS services on one platform, miniaturisation of these devices and performance degradations caused by the user and the local environment. These factors should be thoroughly considered and proper solutions sought in order to develop efficient navigation devices. The authors have been active in this research area over the last decade and are aware that a ...

Get Antennas for Global Navigation Satellite Systems now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.