You are previewing Advanced Organic Chemistry.
O'Reilly logo
Advanced Organic Chemistry

Book Description

Advanced Organic Chemistry: Reactions and Mechanisms covers the four types of reactions -- substitution, addition, elimination and rearrangement; the three types of reagents -- nucleophiles, electrophiles and radicals; and the two effects -- electroni

Table of Contents

  1. Cover
  2. Title Page
  3. Contents
  4. Preface
  5. 1. Concept of Acids and Bases
    1. 1.1 Introduction
      1. 1.1.1 What Is an Acid or a Base
      2. 1.1.2 Properties of Acids
      3. 1.1.3 Properties of Bases
    2. 1.2 Acidity and Basicity of Molecules
      1. 1.2.1 Acidity
      2. 1.2.2 Carbon Acids
      3. 1.2.3 Nitrogen Acids
      4. 1.2.4 Organosulphur Oxyacids
      5. 1.2.5 Basicity
      6. 1.2.6 Effects Decreasing Electron Density on Nitrogen
    3. 1.3 Definition of pka
    4. 1.4 pH Box
      1. 1.4.1 pka Box
      2. 1.4.2 pH of Strong Acids and Bases
      3. 1.4.3 Strong Acids
      4. 1.4.4 Weak Acids
      5. 1.4.5 Strong Bases
      6. 1.4.6 Weak Bases
      7. 1.4.7 pH of Weak Acids and Bases
    5. 1.5 Hard and Soft Acids and Bases
      1. 1.5.1 Lewis Acids and Bases
      2. 1.5.2 Hard and Soft Acids
      3. 1.5.3 Hard and Soft Bases
      4. 1.5.4 Hard and Soft Acid-Base Classification
    6. 1.6 Effect of Structure on Strength of Acids and Bases
      1. 1.6.1 Field Effect
      2. 1.6.2 Resonance Effect
      3. 1.6.3 Periodic Table Correlation
      4. 1.6.4 Statistical Effect
      5. 1.6.5 Hydrogen-bonding
      6. 1.6.6 Steric Effect
      7. 1.6.7 Hybridization
    7. 1.7 Effects of Medium on Acid and Base Strength
    8. 1.8 Levelling Effect
    9. 1.9 Summary
    10. Problems
  6. 2. Delocalized Chemical Bonding and Electronic Effects
    1. 2.1 Introduction
    2. 2.2 Resonance
    3. 2.3 Resonance Energy
    4. 2.4 Resonance Effect
    5. 2.5 Hyperconjugation (Baker–Nathan Effect)
      1. 2.5.1 Negative Hyperconjugation
    6. 2.6 Tautomerism
      1. 2.6.1 Mechanism of Keto-Enol Interconversion
      2. 2.6.2 Differences between Tautomerism and Resonance
    7. 2.7 Nitro-acinitro System
    8. 2.8 Inductive Effect
    9. 2.9 Electromeric Effect
    10. 2.10 Steric Effect
    11. 2.11 Hydrogen Bonding
    12. 2.12 Summary
    13. Problems
  7. 3. Aliphatic Nucleophilic Substitution Reactions
    1. 3.1 Introduction
    2. 3.2 Mechanism of SN2 Reaction
    3. 3.3 Nucleophile in SN2 Reaction
    4. 3.4 Leaving Group in SN2 Reaction
    5. 3.5 Intermolecular versus Intramolecular Reactions
      1. 3.5.1 Baldwin’s Rules
    6. 3.6 Mechanism of SN1 Reaction
    7. 3.7 Leaving Group in SN1 Reaction
    8. 3.8 Nucleophile in SN1 Reaction
    9. 3.9 Carbocation Rearrangements
    10. 3.10 Stereochemistry of SN2 and SN1 Reactions
    11. 3.11 Role of Solvent in SN2 and SN1 Reactions
    12. 3.12 Solvation Effect
    13. 3.13 Effect of Solvent on Rate of Reaction
      1. 3.13.1 Effect of Solvent on Rate of SN1 Reaction
      2. 3.13.2 Effect of Solvent on Rate of SN2 Reaction
    14. 3.14 Benzylic, Allylic, Vinylic and Aryl Halides
    15. 3.15 Competition between SN2 and SN1 Reactions
    16. 3.16 Mixed SN1 and SN2 Mechanism
    17. 3.17 Neighbouring Group Participation
    18. 3.18 Summary
    19. Problems
  8. 4. Elimination Reactions
    1. 4.1 Introduction
      1. 4.1.1 Substitution and Elimination
    2. 4.2 α-Elimination
      1. 4.2.1 Elimination When Nucleophile Attacks Hydrogen
      2. 4.2.2 Nucleophile Effects on Elimination and Substitution
    3. 4.3 E1 and E2 Mechanisms
    4. 4.4 Orientation of Double Bond
    5. 4.5 Role of Leaving Group
      1. 4.5.1 Stereoselective E1 Reactions
      2. 4.5.2 Regioselective E1 Reactions
      3. 4.5.3 Anti-periplanar Transition States of E2 Eliminations
      4. 4.5.4 Stereospecific E2 Eliminations
    6. 4.6 E2 Eliminations from Cyclohexanes
    7. 4.7 Regioselectivity of E2 Eliminations
    8. 4.8 E2 Elimination from Vinyl Halides: How to Make Alkynes
    9. 4.9 Anion-stabilizing Groups Allow E1cB
    10. 4.10 E1cB Rate Equation
    11. 4.11 E1cB Eliminations in Context
    12. 4.12 E1–E2–E1cB Spectrum
    13. 4.13 Pyrolytic or Thermal Eliminations
    14. 4.14 Summary
    15. Problems
  9. 5. Addition Reactions
    1. 5.1 Introduction
    2. 5.2 Electrophilic Addition of HX and X2 to Alkenes
      1. 5.2.1 Experimental Evidence
      2. 5.2.2 Product Analysis
    3. 5.3 Mechanism of Electrophilic Addition
      1. 5.3.1 Halonium Ions
      2. 5.3.2 Stereochemistry
      3. 5.3.3 Stereospecific Electrophilic Addition to Stereoisomeric Alkenes
      4. 5.3.4 Regioselectivity in Unsymmetrical Electrophilic Addition to Alkenes
    4. 5.4 Acid-catalyzed Hydrolysis of Vinyl Ethers
    5. 5.5 Other Electrophilic Addition Reactions to Alkenes
      1. 5.5.1 Epoxidation
      2. 5.5.2 Sharpless Asymmetric Epoxidation
      3. 5.5.3 1,2-bis Hydroxylation
      4. 5.5.4 Hydroboration-oxidation
    6. 5.6 Electrophilic Addition to Alkynes
    7. 5.7 Nucleophilic Addition to Alkenes and Alkynes
      1. 5.7.1 Alkenes
      2. 5.7.2 Alkynes
    8. 5.8 Radical Addition to Alkenes
    9. 5.9 Diels–Alder Reaction
      1. 5.9.1 Solvent in Diels–Alder Reaction
      2. 5.9.2 Applications
    10. 5.10 Summary
    11. Problems
  10. 6. Free Radical Reactions
    1. 6.1 Introduction
      1. 6.1.1 Early Evidence for Existence of Radicals
      2. 6.1.2 Detection and Characterization of Radicals
    2. 6.2 Structure and Bonding of Radicals
    3. 6.3 Thermochemical Data of Radicals
    4. 6.4 Generation of Free Radicals
    5. 6.5 Radicals in Cars
    6. 6.6 Radical Stability
    7. 6.7 Reactions of Free Radicals
    8. 6.8 Stereochemistry of Radical Substitution Reactions
    9. 6.9 Summary
    10. Problems
  11. 7. Molecular Rearrangements
    1. 7.1 Introduction
    2. 7.2 Cationic Rearrangements
    3. 7.3 Wagner–Meerwein Rearrangement
    4. 7.4 Pinacol Rearrangement
    5. 7.5 Semipinacol Rearrangements
    6. 7.6 Demjanov Rearrangement
    7. 7.7 Baeyer–Villiger Oxidation
    8. 7.8 Fries Rearrangement
    9. 7.9 Dienone–Phenol Rearrangement
    10. 7.10 Rearrangement to Electron-deficient Nitrogen
      1. 7.10.1 Beckmann Rearrangement
    11. 7.11 Hofmann, Curtius, Schmidt and Lossen Rearrangements
      1. 7.11.1 Hofmann Rearrangement
      2. 7.11.2 Curtius Degradation (Rearrangement)
      3. 7.11.3 Schmidt Reaction
      4. 7.11.4 Lossen Rearrangement
    12. 7.12 Wolff Rearrangement
    13. 7.13 Electrophilic Rearrangements
      1. 7.13.1 Stevens Rearrangement
      2. 7.13.2 Wittig Rearrangement
      3. 7.13.3 Favorskii Rearrangement
    14. 7.14 Summary
    15. Problems
  12. 8. Aromatic Substitution
    1. 8.1 Introduction
    2. 8.2 Electrophilic Aromatic Substitution (SE Ar)
      1. 8.2.1 Nitration of Benzene
      2. 8.2.2 Halogenation of Benzene
      3. 8.2.3 Friedel–Crafts Alkylation
      4. 8.2.4 Friedel–Crafts Acylation
      5. 8.2.5 Sulphonation of Benzene
      6. 8.2.6 Protonation
    3. 8.3 Reactivity and Orientation in Electrophilic Aromatic Substitution
    4. 8.4 Groups Donating Electrons by Mesomeric Effect
    5. 8.5 Groups Withdrawing Electrons by Mesomeric Effect
    6. 8.6 Groups Withdrawing Electrons by Inductive Effect
    7. 8.7 Groups Donating Electrons by Inductive Effect
    8. 8.8 Ortho/Para Ratios
    9. 8.9 Effects of Multiple Substitution
    10. 8.10 Hammett Equation
    11. 8.11 Nucleophilic Aromatic Substitution
      1. 8.11.1 By Addition-Elimination Mechanism (SN Ar)
      2. 8.11.2 By Elimination-Addition Mechanism
    12. 8.12 Ipso Substitution
    13. 8.13 Summary
    14. Problems
  13. 9. Stereochemistry
    1. 9.1 Introduction
    2. 9.2 Simple Molecules: Hybridization, Conformation and Configuration
      1. 9.2.1 Hybridization: Methane
      2. 9.2.2 Hybridization: Ethene and Alkenes
      3. 9.2.3 Hybridization: Ethyne
      4. 9.2.4 Bonding and Anti-bonding Orbitals
      5. 9.2.5 Conformations: Ethane
      6. 9.2.6 Conformation of Propane and n-butane
      7. 9.2.7 Cyclohexane: Chair Conformation
      8. 9.2.8 Cyclohexane: Boat Corformation
      9. 9.2.9 Inversion of Cyclohexane
      10. 9.2.10 Monosubstituted Cyclohexanes
      11. 9.2.11 Disubstituted Cyclohexanes
    3. 9.3 Chiral Molecules
      1. 9.3.1 Chirality, Enantiomers and Optical Activity
      2. 9.3.2 How to Specify a Configuration
      3. 9.3.3 Cahn–Ingold–Prelog R/S Conventions
      4. 9.3.4 Enantiomers and Diastereomers
      5. 9.3.5 Racemization
      6. 9.3.6 Meso Configuration
      7. 9.3.7 Erythro/Threo and Syn/Anti Configurations
    4. 9.4 Homochiral Molecules
    5. 9.5 Caged Compounds with Two Stereogenic Bridgehead Carbons
    6. 9.6 Epimers and Nomenclature of Bicyclic Compounds
    7. 9.7 Separation of Enantiomers: Resolution
      1. 9.7.1 Mechanical Separation—Crystallization Method
      2. 9.7.2 Resolution through Formation of Diastereomers
      3. 9.7.3 Separation of Enantiomers by Chromatography
      4. 9.7.3 Resolution with Enzymes
    8. 9.8 Summary
    9. Problems
  14. 10. Buckminsterfullerene (Soccer Ball, Bucky Ball)
    1. 10.1 Introduction
    2. 10.2 Synthesis and Isolation of C60
    3. 10.3 Reactions of Fullerenes
    4. 10.4 Application
      1. 10.4.1 Superconductors
      2. 10.4.2 HIV Protease Inhibitor
      3. 10.4.3 Carbon Nanotubes and Nanowires
      4. 10.4.4 Catalysis
      5. 10.4.5 Polymerization Reactions
      6. 10.4.6 Carbon Chemistry
  15. 11. Pericyclic Reactions
    1. 11.1 Introduction
    2. 11.2 Electrocyclic Reactions
    3. 11.3 Theoretical Explanation
    4. 11.4 Conservation of Orbital Symmetry
    5. 11.5 Cycloaddition Reactions
    6. 11.6 Frontier Molecular Orbital Approach
    7. 11.7 Sigmatropic Rearrangements
    8. 11.8 Summary
    9. Problems
  16. 12. Aromaticity
    1. 12.1 Introduction
    2. 12.2 Concept of Aromaticity
    3. 12.3 Anti-aromaticity
    4. 12.4 Annulenes
    5. 12.5 Aromaticity in Charged Rings
    6. 12.6 Homoaromaticity
    7. 12.7 Fused-ring Systems
    8. 12.8 Aromatic Hydrocarbons
    9. 12.9 Heterocyclic Rings
    10. 12.10 Summary
    11. Problems
  17. Glossary
  18. Notes
  19. Acknowledgements
  20. Copyright