You are previewing Advanced Aircraft Flight Performance, Second Edition.
O'Reilly logo
Advanced Aircraft Flight Performance, Second Edition

Book Description

This book discusses aircraft flight performance, focusing on commercial aircraft but also considering examples of high-performance military aircraft. The framework is a multidisciplinary engineering analysis, fully supported by flight simulation, with software validation at several levels. The book covers topics such as geometrical configurations, configuration aerodynamics and determination of aerodynamic derivatives, weight engineering, propulsion systems (gas turbine engines and propellers), aircraft trim, flight envelopes, mission analysis, trajectory optimisation, aircraft noise, noise trajectories and analysis of environmental performance. A unique feature of this book is the discussion and analysis of the environmental performance of the aircraft, focusing on topics such as aircraft noise and carbon dioxide emissions.

Table of Contents

  1. cover
  2. Front
  3. Editors
  4. Title
  5. Copyright
  6. Contents
  7. Tables page
  8. Preface
  9. Nomenclature
  10. Technology Warning
  11. 1  Prolegomena.
    1. 1.1  Performance Parameters
    2. 1.2  Flight Optimisation
    3. 1.3  Certificate of Airworthiness
    4. 1.4  The Need for Upgrading
    5. 1.5  Military Aircraft Requirements
    6. 1.6  Review of Comprehensive Performance Programs
    7. 1.7  The Scope of This Book
    8. 1.8  Comprehensive Programs in This Book
    9. Bibliography
  12. 2  Aircraft Models.
    1. 2.1  Model for Transport Aircraft
    2. 2.2  Wire-Frame Definitions
    3. 2.2.1   Stochastic Method for Reference Areas
    4. 2.3  Wing Sections
    5. 2.4  Wetted Areas
    6. 2.4.1   Lifting Surfaces
    7. 2.4.2   Fuselage
    8. 2.4.3   Nacelles and Pylons
    9. 2.4.4   Winglets
    10. 2.4.5   Flaps, Slats and Other Control Surfaces
    11. 2.4.6   Model Verification: Cross-Sectional Area
    12. 2.5  Aircraft Volumes
    13. 2.5.1   Case Study: Do Aircraft Sink or Float on Water?
    14. 2.5.2   Wing Fuel Tanks
    15. 2.6  Mean Aerodynamic Chord
    16. 2.7  Geometry Model Verification
    17. 2.7.1   Case Study: Wetted Areas of Transport Aircraft
    18. 2.8  Reference Systems
    19. 2.8.1   Angular Relationships
    20. 2.8.2   Definition of the Aircraft State
    21. Summary
    22. Bibliography
    23. Nomenclature for Chapter 2
  13. 3  Weight and Balance Performance
    1. 3.1  A Question of Size
    2. 3.2  Design and Operational Weights
    3. 3.3  Weight Management
    4. 3.4  Determination of Operational Limits
    5. 3.5  Centre of Gravity Envelopes
    6. 3.5.1   CG Travel during Refuelling
    7. 3.5.2   CG Travel in Flight
    8. 3.5.3   Design Limits on CG Position
    9. 3.5.4   Determination of the Zero-Fuel CG Limit
    10. 3.5.5   Influence of CG Position on Performance
    11. 3.6  Operational Moments
    12. 3.7  Use of Wing Tanks
    13. 3.8  Mass and Structural Properties
    14. 3.8.1   Mass Distribution
    15. 3.8.2   Centre of Gravity
    16. 3.8.3   Moments of Inertia
    17. 3.8.4   Case Study: Moments of Inertia
    18. Summary
    19. Bibliography
    20. Nomenclature for Chapter 3
  14. 4  Aerodynamic Performance
    1. 4.1 Aircraft Lift
    2. 4.1.1   Calculation of Wing Lift
    3. 4.1.2   Wing Lift during a Ground Run
    4. 4.1.3   Lift Augmentation
    5. 4.1.4   Maximum Lift Coefficient
    6. 4.2  Aircraft Drag
    7. 4.2.1   Lift-Induced Drag
    8. 4.2.2   Profile Drag
    9. 4.2.3   Wave Drag
    10. 4.2.4   Interference Drag
    11. 4.2.5   Drag of the Control Surfaces
    12. 4.2.6   Landing-Gear Drag
    13. 4.2.7   Environmental Effects
    14. 4.2.8   Other Drag Components
    15. 4.2.9   Case Study: Aerodynamics of the F4 Wind-Tunnel Model
    16. 4.2.10  Case Study: Drag Analysis of Transport Aircraft
    17. 4.2.11  Case Study: Drag Analysis of the ATR72-500
    18. 4.2.12  Case Study: Drag Analysis of the Airbus A380-861
    19. 4.3  Transonic Airfoil Model
    20. 4.4  Aircraft Drag at Transonic and Supersonic Speeds
    21. 4.4.1   Drag of Bodies of Revolution
    22. 4.5  Buffet Boundaries
    23. 4.6  Aerodynamic Derivatives
    24. 4.7  Float-Plane’s Hull Resistance in Water
    25. 4.8  Vortex Wakes
    26. Summary
    27. Bibliography
    28. Nomenclature for Chapter 4
  15. 5  Engine Performance
    1. 5.1  Gas Turbine Engines
    2. 5.2  Thrust and Power Ratings
    3. 5.2.1   Engine Derating
    4. 5.2.2   Transient Response
    5. 5.3  Turbofan Engine Model
    6. 5.3.1   Aero-Thermodynamic Model
    7. 5.3.2   Determination of Design Point
    8. 5.3.3   Case Study: General Electric CF6-80C2
    9. 5.3.4   Rubber Engines
    10. 5.3.5   Effects of Contamination
    11. 5.3.6   Performance Deterioration
    12. 5.3.7   Data Handling
    13. 5.4  Turboprop Engines
    14. 5.4.1   Case Study: Turboprop PW127M
    15. 5.5  Turbojet with After-Burning
    16. 5.6  Generalised Engine Performance
    17. 5.7  Auxiliary Power Unit
    18. 5.7.1   Case Study: Honeywell RE-220 APU
    19. Summary
    20. Bibliography
    21. Nomenclature for Chapter 5
  16. 6  Propeller Performance
    1. 6.1  Propeller Definitions
    2. 6.1.1   Propeller Limitations
    3. 6.2  Propulsion Models
    4. 6.2.1   Axial Momentum Theory
    5. 6.2.2   The Blade Element Method
    6. 6.2.3   Propeller in Non-Axial Flight
    7. 6.2.4   Case Study: Hamilton-Sundstrand F568 Propeller
    8. 6.3  Flight Mechanics Integration
    9. 6.3.1   Propeller’s Rotational Speed
    10. 6.4  Propeller Installation Effects
    11. 6.4.1   Gearbox Effects
    12. Summary
    13. Bibliography
    14. Nomenclature for Chapter 6
  17. 7  Airplane Trim
    1. 7.1  Longitudinal Trim at Cruise Conditions
    2. 7.1.1   Trim Drag
    3. 7.1.2   Solution of the Static Longitudinal Trim
    4. 7.1.3   Stick-Free Longitudinal Trim
    5. 7.2  Airplane Control under Thrust Asymmetry
    6. 7.2.1   Dihedral Effect
    7. Summary
    8. Bibliography
    9. Nomenclature for Chapter 7
  18. 8  Flight Envelopes
    1. 8.1  The Atmosphere
    2. 8.1.1   International Standard Atmosphere
    3. 8.1.2   Other Atmosphere Models
    4. 8.2  Operating Speeds
    5. 8.3  Design Speeds
    6. 8.4  Optimum Level Flight Speeds
    7. 8.5  Ceiling Performance
    8. 8.5.1   Pressure Effects on Human Body
    9. 8.5.2   Cabin Pressurisation
    10. 8.6  Flight Envelopes
    11. 8.6.1   Calculation of Flight Envelopes
    12. 8.6.2   Case Study: Flight Envelopes of the A320 and G550
    13. 8.7  Supersonic Flight
    14. 8.7.1   Supersonic D ash
    15. 8.7.2   Supersonic Acceleration
    16. 8.7.3   Supersonic Flight Envelopes
    17. Summary
    18. Bibliography
    19. Nomenclature for Chapter 8
  19. 9  Take-Off and Field Performance
    1. 9.1  Take-Off of Transport-Type Airplane
    2. 9.2  Take-Off Equations: Jet Airplane
    3. 9.2.1   Ground Run
    4. 9.2.2   Rolling Coefficients
    5. 9.3  Solution of the Take-Off Equations
    6. 9.3.1   Case Study: Normal Take-Off of an Airbus A300-600 Model
    7. 9.3.2   Effect of the CG Position on Take-Off
    8. 9.3.3   Effect of Shock Absorbers
    9. 9.4  Take-Off with One Engine Inoperative
    10. 9.4.1   Decelerate-Stop
    11. 9.4.2   Accelerate-Stop
    12. 9.5  Take-Off of Propeller Aircraft
    13. 9.6  Minimum Control Speed
    14. 9.7  Aircraft Braking Concepts
    15. 9.8  Performance on Contaminated Runways
    16. 9.8.1   Contamination Drag
    17. 9.8.2   Impingement Drag
    18. 9.9  Closed-Form Solutions for Take-Off
    19. 9.9.1   Jet Aircraft
    20. 9.9.2   Propeller Aircraft
    21. 9.10  Ground Operations
    22.   9.10.1   Ground Manoeuvring
    23.   9.10.2   Bird Strike
    24.   Summary
    25.   Bibliography
    26.   Nomenclature for Chapter 9
  20. 10  Climb Performance
    1. 10.1  Introduction
    2. 10.2  Closed-Form Solutions
    3. 10.2.1   Steady Climb of Jet Airplane
    4. 10.2.2   Steady Climb of Propeller Airplane
    5. 10.2.3   Climb at Maximum Angle of Climb
    6. 10.3  Climb to Altitude of a Commercial Airplane
    7. 10.3.1   Climb Profiles
    8. 10.3.2   OEI Take-Off and Go-Around
    9. 10.3.3   Governing Equations
    10. 10.3.4   Boundary-Value Problem
    11. 10.3.5   Numerical Issues
    12. 10.3.6   Initial Climb with One Engine Inoperative
    13. 10.4  Climb of Commercial Propeller Aircraft
    14. 10.5  Energy Methods
    15. 10.5.1   Total-Energy Model
    16. 10.5.2   Specific Excess Power Charts
    17. 10.5.3   Differential Excess Power Charts
    18. 10.6  Minimum Problems with the Energy Method
    19. 10.6.1   Minimum Time to Climb and Steepest Climb
    20. 10.6.2   Minimum Fuel to Climb
    21. 10.6.3   Polar Chart for the Climb Rate
    22. 10.6.4   Case Study: Climb to Specified Mach Number
    23. 10.6.5   Minimum Flight Paths
    24.  Summary
    25.  Bibliography
    26.  Nomenclature for Chapter 10
  21. 11  Descent and Landing Performance
    1. 11.1  En-Route Descent
    2. 11.2  Final Approach
    3. 11.3  Continuous Descent Approach
    4. 11.4  Steep Descent
    5. 11.5  Unpowered Descent
    6. 11.5.1   Minimum Sinking Speed
    7. 11.5.2   Minimum Glide Angle
    8. 11.5.3   General Gliding Flight
    9. 11.5.4   Maximum Glide Range with the Energy Method
    10. 11.6  Holding Procedures
    11. 11.7  Landing Performance
    12. 11.7.1   Airborne Phase
    13. 11.7.2   Landing Run
    14. 11.7.3   Crab Landing
    15. 11.8   Go-Around Performance
    16.  Summary
    17.  Bibliography
    18.  Nomenclature for Chapter 11
  22. 12  Cruise Performance
    1. 12.1  Introduction
    2. 12.2  Point Performance
    3. 12.2.1   Specific Air Range at Subsonic Speed
    4. 12.2.2   Figure of Merit
    5. 12.2.3   Weight-Altitude Relationship
    6. 12.3  Numerical Solution of the Specific Air Range
    7. 12.3.1   Case Study: Gulfstream G550
    8. 12.3.2   Case Study: ATR72-500
    9. 12.3.3   Effects of Atmospheric Winds on SAR
    10. 12.4  The Range Equation
    11. 12.4.1   Endurance
    12. 12.5  Subsonic Cruise of Jet Aircraft
    13. 12.5.1   Cruise at Constant Altitude and Mach Number
    14. 12.5.2   Cruise at Constant Altitude and Lift Coefficient
    15. 12.5.3   Cruise at Constant Mach and Lift Coefficient
    16. 12.5.4   Comparison among Cruise Programs
    17. 12.5.5   Fuel Burn for Given Range
    18. 12.6  Cruise Range of Propeller Aircraft
    19. 12.7  Cruise Altitude Selection
    20. 12.8  Cruise Performance Deterioration
    21. 12.9  Cost Index and Economic Mach Number
    22. 12.10 Centre of Gravity Position
    23. 12.11 Supersonic Cruise
    24.  12.11.1   Cruise at Constant Altitude and Mach Number
    25.  12.11.2   Cruise at Constant Mach Number and Lift Coefficient
    26.   Summary
    27.   Bibliography
    28.   Nomenclature for Chapter 12
  23. 13  Manoeuvre Performance
    1. 13.1  Introduction
    2. 13.2  Powered Turns
    3. 13.2.1   Banked Turn at Constant Thrust
    4. 13.2.2   Turn Power and High-Speed Manoeuvre
    5. 13.2.3   Turn Rates and Corner Speed
    6. 13.2.4   Minimum-Fuel Turn
    7. 13.3  Unpowered Turns
    8. 13.4  Manoeuvre Envelope:
    9. 13.4.1   Sustainable
    10. 13.5  Roll Performance
    11. 13.5.1   Mach Number Effects
    12. 13.6  Pull-Up Manoeuvre
    13. 13.7  Flight in a Downburst
    14. 13.7.1   Aircraft Manoeuvre in a Downburst
    15. 13.7.2   Case Study: Flight in a Downburst
    16.  Summary
    17.  Bibliography
    18.  Nomenclature for Chapter 13
  24. 14  Thermo-Structural Performance
    1. 14.1  Cold-Weather Operations
    2. 14.1.1   Aircraft Icing
    3. 14.2  Aviation Fuels
    4. 14.3  Fuel Temperature in Flight
    5. 14.4  Fuel-Temperature Model
    6. 14.4.1   Fuel-Vapour Model
    7. 14.4.2   Heat-Transfer Model
    8. 14.4.3   Numerical Solution
    9. 14.4.4   Numerical Solution and Verification
    10. 14.5  Tyre-Heating Model
    11. 14.5.1   Numerical Simulations
    12. 14.6  Jet Blast
    13. Summary
    14. Bibliography
    15. Nomenclature for Chapter 14
  25. 15  Mission Analysis
    1. 15.1  Mission Profiles
    2. 15.1.1   Operational Parameters
    3. 15.2  Range-Payload Chart
    4. 15.2.1   Case Study: Range Sensitivity Analysis
    5. 15.2.2   Case Study: Payload-Range of the ATR72-500
    6. 15.2.3   Calculation of the Payload-Range Chart
    7. 15.3  Mission Analysis
    8. 15.3.1   Mission Range for Given Fuel and Payload
    9. 15.4  Mission Fuel for Given Range and Payload
    10. 15.4.1   Mission-Fuel Prediction
    11. 15.4.2   Mission-Fuel Iterations
    12. 15.5  Reserve Fuel
    13. 15.5.1   Redispatch Procedure
    14. 15.6  Take-Off Weight Limited by MLW
    15. 15.7  Mission Problems
    16. 15.7.1   Cruise with Intermediate Stop
    17. 15.7.2   Fuel Tankering
    18. 15.7.3   Equal-Time Point and Point-of-No-Return
    19. 15.8  Direct Operating Costs
    20. 15.9  Case Study: Aircraft and Route Selection
    21. 15.10 Case Study: Fuel Planning for Specified Range, B777-300
    22. 15.11 Case Study: Payload-Range Analysis of Float-Plane
    23.  15.11.1   Estimation of Floats Drag from Payload-Range Chart
    24. 15.12  Risk Analysis in Aircraft Performance
    25.   Summary
    26.   Bibliography
    27.   Nomenclature for Chapter 15
  26. 16  Aircraft Noise: Noise Sources
    1. 16.1  Introduction
    2. 16.2  Definition of Sound and Noise
    3. 16.2.1   Integral Metrics: Effective Perceived Noise
    4. 16.2.2   Integral Metrics: Sound Exposure Level
    5. 16.3  Aircraft Noise Model
    6. 16.3.1   Polar-Emission Angle
    7. 16.4  Propulsive Noise
    8. 16.4.1   Noise-Propulsion System Interface
    9. 16.4.2   Fan and Compressor Noise
    10. 16.4.3   Combustor Noise
    11. 16.4.4   Turbine Noise
    12. 16.4.5   Single-Jet Noise
    13. 16.4.6   Co-Axial Jet Noise
    14. 16.4.7   Far-Field Noise from a Subsonic Circular Jet
    15. 16.4.8   Stone Jet Noise Model
    16. 16.4.9   Jet-Noise Shielding
    17. 16.5  APUNoise
    18. 16.6  Airframe Noise
    19. 16.6.1   Wing Noise
    20. 16.6.2   Landing-Gear Noise
    21. 16.7  Propeller Noise
    22. 16.7.1   Propeller’s Harmonic Noise
    23. 16.7.2   Propeller’s Broadband Noise
    24.  Summary
    25.  Bibliography
    26.  Nomenclature for Chapter 16
  27. 17  Aircraft Noise: Propagation
    1. 17.1  Airframe Noise Shielding
    2. 17.2  Atmospheric Absorption of Noise
    3. 17.3  Ground Reflection
    4. 17.3.1   Ground Properties
    5. 17.3.2   Turbulence Effects
    6. 17.4  Wind and Temperature Gradient Effects
    7. 17.4.1   Numerical Solution
    8.  Summary
    9.  Bibliography
    10.  Nomenclature for Chapter 17
  28. 18  Aircraft Noise: Flight Trajectories
    1. 18.1  Aircraft Noise Certification
    2. 18.2  Noise-Abatement Procedures
    3. 18.2.1   Cumulative Noise Index
    4. 18.2.2   Noise-Program Flowchart
    5. 18.3  Flight-Mechanics Integration
    6. 18.3.1   Noise Data Handling
    7. 18.4  Noise Sensitivity Analysis
    8. 18.5  Case Study: Noise Trajectories of Jet Aircraft
    9. 18.6  Case Study: Noise Trajectories of Propeller Aircraft
    10. 18.7  Further Parametric Analysis ofNoise Performance
    11. 18.8  Verification of the Aircraft-Noise Model
    12. 18.9  Noise Footprint
    13. 18.9.1   Noise Maps Refinement
    14. 18.10  Noise from Multiple Aircraft Movements
    15. 18.10.1   Noise Reduction and Its Limitations
    16.  Summary
    17.  Bibliography
    18.  Nomenclature for Chapter 18
  29. 19  Environmental Performance
    1. 19.1  Aircraft Contrails
    2. 19.1.1   Cirrus Clouds
    3. 19.1.2   Cruise Altitude Flexibility
    4. 19.1.3   The Contrail Factor
    5. 19.1.4   Effects of Propulsive Efficiency
    6. 19.1.5   Heat Released in High Atmosphere
    7. 19.2  Radiative Forcing of Exhaust Emissions
    8. 19.3  Landing and Take-Off Emissions
    9. 19.4  Case Study: Carbon-Dioxide Emissions
    10. 19.5  The Perfect Flight
    11. 19.6  Emissions Trading
    12. 19.7  Other Aspects of Emissions
    13. Summary
    14. Bibliography
    15. Nomenclature for Chapter 19
  30. 20 Epilogue
  31. AppendixA
  32. AppendixB
  33. AppendixC
  34. Index