PREFACE

No observation is ever exact. As a corollary, every observation contains error. These statements are fundamental and accepted universally. It follows logically, therefore, that surveyors, who are measurement specialists, should have a thorough understanding of errors. They must be familiar with the different types of errors, their sources, and their expected magnitudes. Armed with this knowledge, they will be able to (1) adopt procedures for reducing error sizes when making their measurements and (2) account rigorously for the presence of errors as they analyze and adjust their data. This book is devoted to creating a better understanding of these topics.

In recent years, the least squares method of adjusting spatial data has been rapidly gaining popularity as the method used for analyzing and adjusting surveying data. This should not be surprising, because the method is the most rigorous adjustment procedure available. It is soundly based on the mathematical theory of probability; it allows for appropriate weighting of all observations in accordance with their expected precisions; and it enables complete statistical analyses to be made following adjustments so that the expected precisions of adjusted quantities can be determined. Procedures for employing the method of least squares and then statistically analyzing the results are major topics covered in this book.

In years past, least squares was only seldom used for adjusting surveying data because the time required ...

Get Adjustment Computations, 6th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.