You are previewing Adhesive Particle Flows.
O'Reilly logo
Adhesive Particle Flows

Book Description

Offering a comprehensive treatment of adhesive particle flows, this book adopts a particle-level approach oriented toward directly simulating the various fluid, electric field, collision, and adhesion forces and torques acting on the particles, within the framework of a discrete-element model. It is ideal for professionals and graduate students working in engineering and atmospheric and condensed matter physics, materials science, environmental science, and other disciplines where particulate flows have a significant role. The presentation is applicable to a wide range of flow fields, including aerosols, colloids, fluidized beds, and granular flows. It describes both physical models of the various forces and torques on the particles as well as practical aspects necessary for efficient implementation of these models in a computational framework.

Table of Contents

  1. Coverpage
  2. Half title page
  3. Title page
  4. Copyright page
  5. Dedication
  6. Contents
  7. Preface
  8. Acknowledgments
  9. 1. Introduction
    1. 1.1. Adhesive Particle Flow
    2. 1.2. Dimensionless Parameters and Related Simplifications
      1. 1.2.1. Stokes Number
      2. 1.2.2. Density Ratio
      3. 1.2.3. Length Scale Ratios
      4. 1.2.4. Particle Reynolds Number
      5. 1.2.5 Particle Concentration and Mass Loading
      6. 1.2.6. Bagnold Number
      7. 1.2.7. Adhesion Parameter
    3. 1.3. Applications
      1. 1.3.1. Fibrous Filtration Processes
      2. 1.3.2. Extraterrestrial Dust Fouling
      3. 1.3.3. Wet Granular Material
      4. 1.3.4. Blood Flow
      5. 1.3.5. Aerosol Reaction Engineering
  10. 2. Modeling Viewpoints and Approaches
    1. 2.1. A Question of Scale
    2. 2.2. Macroscale Particle Methods
      1. 2.2.1. Discrete Parcel Method
      2. 2.2.2. Population Balance Method
    3. 2.3. Mesoscale Particle Methods
      1. 2.3.1. Molecular Dynamics
      2. 2.3.2. Brownian Dynamics
      3. 2.3.3. Dissipative Particle Dynamics
      4. 2.3.4. Discrete Element Method
    4. 2.4. Microscale Dynamics of Elastohydrodynamic Particle Collisions
      1. 2.4.1. Microscale Simulations of Elastohydrodynamic Interactions
      2. 2.4.2. Experimental Results for Two-Particle Collisions
      3. 2.4.3. Simplified Models for Restitution Coefficient in a Viscous Fluid
  11. 3. Contact Mechanics without Adhesion
    1. 3.1. Basic Concepts
    2. 3.2. Hertz Theory: Normal Elastic Force
      1. 3.2.1. Derivation
      2. 3.2.2. Two-Particle Collision
    3. 3.3. Normal Dissipation Force
      1. 3.3.1. Physical Mechanisms
      2. 3.3.2. Models for Solid-Phase Dissipation Force
    4. 3.4. Hysteretic Models for Normal Contact with Plastic Deformation
    5. 3.5. Sliding and Twisting Resistance
      1. 3.5.1. Physical Mechanisms of Sliding and Twisting Resistance
      2. 3.5.2. Sliding Resistance Model
      3. 3.5.3. Twisting Resistance Model
    6. 3.6. Rolling Resistance
      1. 3.6.1. Rolling Velocity
      2. 3.6.2. Physical Mechanism of Rolling Resistance
      3. 3.6.3. Model for Rolling Resistance
  12. 4. Contact Mechanics with Adhesion Forces
    1. 4.1. Basic Concepts and the Surface Energy Density
    2. 4.2. Contact Mechanics with van der Waals Force
      1. 4.2.1. Models for Normal Contact Force
      2. 4.2.2 Normal Dissipation Force and Its Validation
      3. 4.2.3. Effect of Adhesion on Sliding and Twisting Resistance
      4. 4.2.4. Effect of Adhesion on Rolling Resistance
    3. 4.3. Electrical Double-Layer Force
      1. 4.3.1. Stern and Diffuse Layers
      2. 4.3.2. Ionic Shielding of Charged Particles
      3. 4.3.3. DLVO Theory
    4. 4.4. Protein Binding
    5. 4.5. Liquid Bridging Adhesion
      1. 4.5.1. Capillary Force
      2. 4.5.2. Effect of Roughness on Capillary Cohesion
      3. 4.5.3. Viscous Force
      4. 4.5.4. Rupture Distance
      5. 4.5.5. Capillary Torque on a Rolling Particle
    6. 4.6. Sintering Force
      1. 4.6.1. Sintering Regime Map
      2. 4.6.2. Approximate Sintering Models
      3. 4.6.3. Hysteretic Sintering Contact Model
  13. 5. Fluid Forces on Particles
    1. 5.1. Drag Force and Viscous Torque
      1. 5.1.1. Effect of Flow Nonuniformity
      2. 5.1.2. Effect of Fluid Inertia
      3. 5.1.3. Effect of Surface Slip
    2. 5.2. Lift Force
      1. 5.2.1. Saffman Lift Force
      2. 5.2.2. Magnus Lift Force
    3. 5.3. Forces in Unsteady Flows
      1. 5.3.1. Pressure-Gradient (Buoyancy) Force
      2. 5.3.2. Added Mass Force
      3. 5.3.3. History Force
    4. 5.4. Brownian Motion
    5. 5.5. Scaling Analysis
    6. 5.6. Near-Wall Effects
      1. 5.6.1. Drag Force
      2. 5.6.2. Lift Force
    7. 5.7. Effect of Surrounding Particles
      1. 5.7.1. Flow through Packed Beds
      2. 5.7.2. Flow through Fluidized Beds
      3. 5.7.3. Simulations
      4. 5.7.4. Effect of Particle Polydispersity
    8. 5.8. Stokesian Dynamics
      1. 5.8.1. Example for Falling Cluster of Particles
      2. 5.8.2. General Theory
    9. 5.9. Particle Interactions with Acoustic Fields
      1. 5.9.1. Orthokinetic Motion
      2. 5.9.2. Acoustic Wake Effect
  14. 6. Particle Dispersion in Turbulent Flows
    1. 6.1. Particle Motion in Turbulent Flows
    2. 6.2. Particle Drift Measure
    3. 6.3. Particle Collision Models
      1. 6.3.1. Collision Mechanisms
      2. 6.3.2. Orthokinetic Collisions (Small Stokes Numbers)
      3. 6.3.3. Accelerative-Independent Collisions (Large Stokes Numbers)
      4. 6.3.4. Accelerative-Correlative Collisions (Intermediate Stokes Numbers)
    4. 6.4. Dynamic Models for Particle Dispersion
    5. 6.5. Dynamic Models for Particle Clustering
  15. 7. Ellipsoidal Particles
    1. 7.1. Particle Dynamics
    2. 7.2. Fluid Forces
    3. 7.3. Collision Detection and Contact Point Identification
      1. 7.3.1. Two-Dimensional Algorithms
      2. 7.3.2. Algorithms Based on a Common Normal Vector
      3. 7.3.3. Algorithms Based on Geometric Level Surfaces
    4. 7.4. Contact Forces
      1. 7.4.1. Geometry of Colliding Particles
      2. 7.4.2. Hertz Theory for Ellipsoidal Particles
  16. 8. Particle Interactions with Electric and Magnetic Fields
    1. 8.1. Electric Field Forces and Torques
      1. 8.1.1. Coulomb Force and Dielectrophoresis
      2. 8.1.2. Dielectrophoresis in an AC Electric Field
      3. 8.1.3. Application to Particle Separation and Focusing
    2. 8.2. Mechanisms of Particle Charging
      1. 8.2.1. Field Charging
      2. 8.2.2. Diffusion Charging
      3. 8.2.3. Contact Electrification
      4. 8.2.4. Contact De-electrification
    3. 8.3. Magnetic Field Forces
    4. 8.4. Boundary Element Method
      1. 8.4.1. General Boundary Element Method
      2. 8.4.2. Pseudoimage Method for Particles Near an Electrode Surface
      3. 8.4.3. Problems with DEP Force Near Panel Edges
    5. 8.5. Fast Multipole Method for Long-Range Forces
    6. 8.6. Electrostatic Agglomeration Processes
      1. 8.6.1. Relative Importance of Electrostatic and van der Waals Adhesion Forces
      2. 8.6.2. Particle Chain Formation
  17. 9. Nanoscale Particle Dynamics
    1. 9.1. Continuum and Free-Molecular Regimes
      1. 9.1.1. Drag Force
      2. 9.1.2. Brownian Force
      3. 9.1.3. Mean-Free-Path of Nanoparticles
      4. 9.1.4. Thermophoretic Force
      5. 9.1.5. Competition between Diffusion and Thermophoresis during Deposition
    2. 9.2. Nanoparticle Interactions
      1. 9.2.1. Collision of Large Nanoparticles
      2. 9.2.2. Collision of Small Nanoparticles
      3. 9.2.3. Long-Range Interparticle Electrostatic Forces
    3. 9.3. Time Scales of Nanoparticle Collision-Coalescence Mechanism
      1. 9.3.1. Time Scale of Particle Collisions
      2. 9.3.2. Time Scale of Nanoparticle Sintering
  18. 10. Computer Implementation and Data Analysis
    1. 10.1. Particle Time Stepping
      1. 10.1.1. Numerical Stability
      2. 10.1.2. Multiscale Time-Stepping Approaches
    2. 10.2. Flow in Complex Domains
      1. 10.2.1. Particle Search Algorithm
      2. 10.2.2. Level Set Distance Function
    3. 10.3. Measures of Local Concentration
    4. 10.4. Measures of Particle Agglomerates
      1. 10.4.1. Particle Count and Orientation Measures
      2. 10.4.2. Agglomerate Orientation Measures
      3. 10.4.3. Equivalent Agglomerate Ellipse
      4. 10.4.4. Agglomerate Fractal Dimension
      5. 10.4.5. Particle Packing Measures
  19. 11. Applications
    1. 11.1. Particle Migration in Tube and Channel Flows
      1. 11.1.1. Inertial Particle Migration in Straight Tubes
      2. 11.1.2. Collision-Induced Particle Migration
      3. 11.1.3. Particle Migration in the Presence of Wavy Tube Walls
    2. 11.2. Particle Filtration
      1. 11.2.1. Fiber Filtration
      2. 11.2.2. Enhancement of Filtration Rate by Particle Mixtures
      3. 11.2.3. Enhancement of Filtration Rate by Electric Fields
    3. 11.3. Rotating Drum Mixing Processes
      1. 11.3.1. Flow Regimes
      2. 11.3.2. Mixing and Segregation
      3. 11.3.3. Cohesive Mixing and Segregation
    4. 11.4. Dust Removal Processes
      1. 11.4.1. Hydrodynamic Dust Mitigation
      2. 11.4.2. Electric Curtain Mitigation for Charged Particles
    5. 11.5. Final Comments
  20. Index