## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

Appendix B

Linear algebra

B.1 Finite-dimensional vector spaces

We are concerned with real vector spaces, but the results extend readily to complex vector spaces, as well. We describe briefly the ideas and results that we need1.

Let K denote either the field R of real numbers or the field C of complex numbers. A vector space E over K is an abelian additive group (E, +), together with a mapping (scalar multiplication) (λ, x) → λx of K × E into E which satisfies

1.x = x,

(λ + μ)x = λx + μx,

λ(μx) = (λμ) x,

λ(x + y) = λx + λy,

for λ, μK and x, yE. The elements of E are called vectors and the elements of K are called scalars.

It then follows that 0. x = 0 and λ.0 = 0 for xE and λK. (Note that the same symbol 0 is used for the additive ...

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required