Chapter 35. Designing with Exceptions

This chapter rounds out this part of the book with a collection of exception design topics and common use case examples, followed by this part’s gotchas and exercises. Because this chapter also closes out the fundamentals portion of the book at large, it includes a brief overview of development tools as well to help you as you make the migration from Python beginner to Python application developer.

Nesting Exception Handlers

Our examples so far have used only a single try to catch exceptions, but what happens if one try is physically nested inside another? For that matter, what does it mean if a try calls a function that runs another try? Technically, try statements can nest, in terms of syntax and the runtime control flow through your code.

Both of these cases can be understood if you realize that Python stacks try statements at runtime. When an exception is raised, Python returns to the most recently entered try statement with a matching except clause. Because each try statement leaves a marker, Python can jump back to earlier trys by inspecting the stacked markers. This nesting of active handlers is what we mean when we talk about propagating exceptions up to “higher” handlers—such handlers are simply try statements entered earlier in the program’s execution flow.

Figure 35-1 illustrates what occurs when try statements with except clauses nest at runtime. The amount of code that goes into a try block can be substantial, and it may contain function ...

Get Learning Python, 4th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.